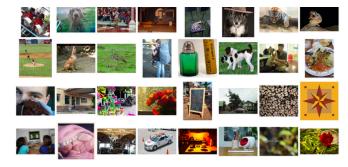
New Federated Learning Algorithms for Deep Learning with Unbounded Smooth Landscape

> Mingrui Liu Department of Computer Science George Mason University <u>mingruil@gmu.edu</u>

October 25, 2023 (Rensselaer Polytechnic Institute)

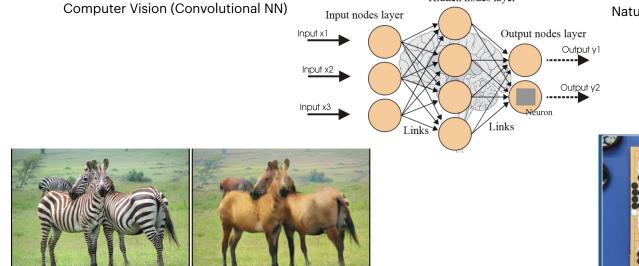
### **Empirical Success of Deep Learning**

Hidden nodes layer

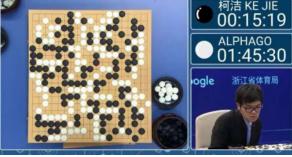




Natural Language Processing (Recurrent NN, Transformer)

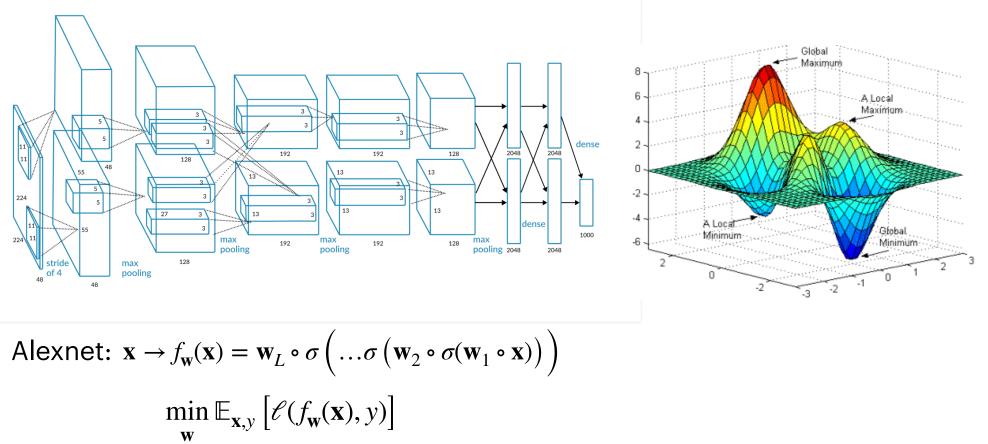


Generative Modeling (Generative Adversarial Networks)



Game (Reinforcement Learning, Policy NN)

#### **Deep Neural Networks: Nonconvex Optimization**

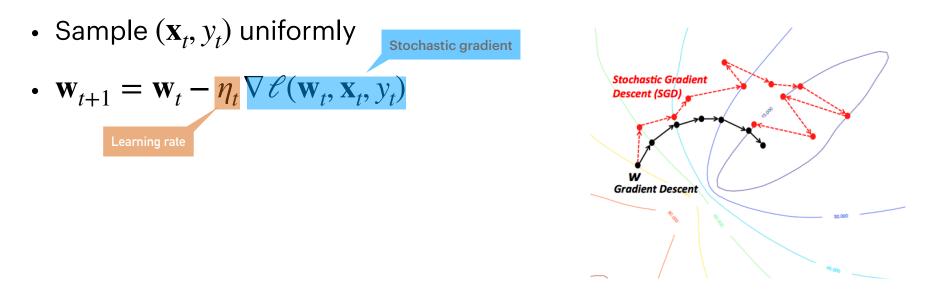


# The workhorse in Machine Learning

#### **Stochastic Gradient Descent**

 $\min_{\mathbf{w}} \mathbb{E}_{\mathbf{x}, y} \left[ \ell(f_{\mathbf{w}}(\mathbf{x}), y) \right]$ 

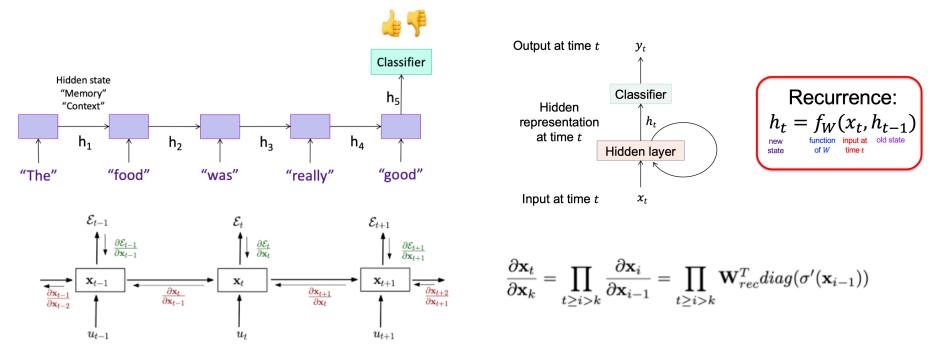
• Stochastic Gradient Descent (SGD) [Robbins-Monro'51]



# **Assumptions in Optimization for Deep Learning**

- Which assumption should we use for analyzing deep learning optimization such as SGD?
- We all like the "smoothness" assumption:
  - *L*-smooth function:  $\|\nabla F(\mathbf{x}) \nabla F(\mathbf{y})\| \le L \|\mathbf{x} \mathbf{y}\|$
  - In a smooth function,
    - Gradient goes to zero approaching to a local or global minimum, even if nonconvex
    - The function is upper bounded by a quadratic function
    - SGD can decrease the loss monotonically in expectation (a.k.a., descent lemma)

#### **Gradient Explosion in Recurrent Neural Networks**

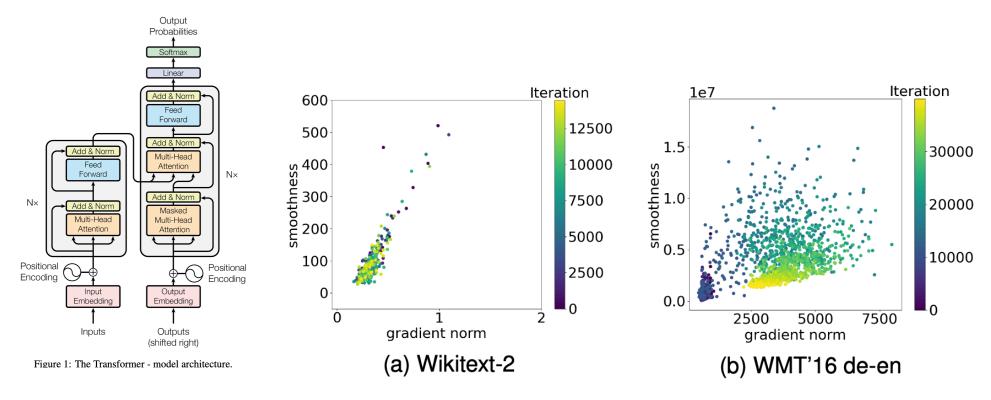


- Gradient will explode for long input if the recurrent matrix W has eigenvalue > 1
- The standard smoothness assumption does not hold

# **Unbounded Smoothness**

- Smoothness is not satisfied in many cases
  - e.g., all univariate polynomials such as  $x^4$ , exp(x)
- More importantly, [Zhang et al. ICLR'20] showed that deep neural networks have unbounded smoothness (e.g., gradient explosion)
- [Zhang et al. ICLR'20] introduced a weaker notion called "relaxed smoothness" or  $(L_0, L_1)$ -smoothness, and showed it holds for LSTMs
  - $\|\nabla^2 F(\mathbf{x})\| \le L_0 + L_1 \|\nabla F(x)\|$

## **Transformers Satisfy Relaxed Smoothness**



[Vaswani et al. NeurIPS'17]

We show that transformers satisfy relaxed smoothness [Crawshaw-L.-Orabona-Zhang-Zhuang, NeurIPS'22]

#### SGD with Gradient Clipping under $(L_0, L_1)$ -smoothness

- Gradient clipping ensures SGD's convergence under  $(L_0, L_1)$ -smoothness [Zhang et al. ICLR'20]

 Algorithm 1 Pseudo-code for norm clipping the gradients whenever they explode

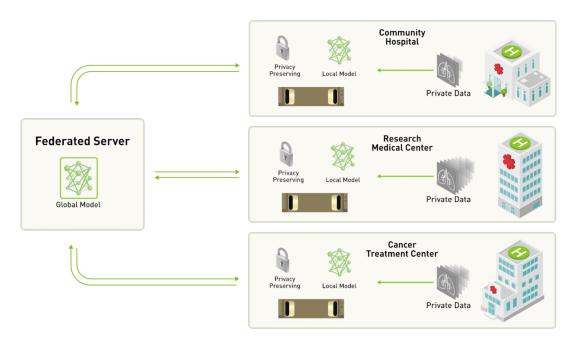
  $\hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta}$ 
 $\mathbf{if} ||\hat{\mathbf{g}}|| \ge threshold$  then

  $\hat{\mathbf{g}} \leftarrow \frac{threshold}{||\hat{\mathbf{g}}||} \hat{\mathbf{g}}$  

 end if

- Gradient clipping is necessary because relaxed smoothness can make the gradient exponentially large [Zhang et al. ICLR'20]
- But this algorithm is not scalable in large-scale federated deep learning

# **Motivation (Federated Learning)**

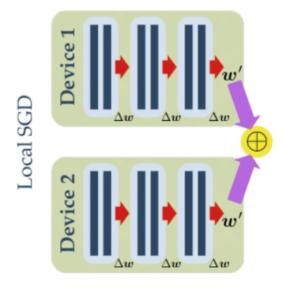


- Data is not shared
- Communication is expensive
- Data might not be i.i.d.
- Federated Learning (FL) [Mcmahan-Moore-Ramage-Hampson-Arcas, AISTATS'17]

How to design scalable algorithms in federated learning setting for relaxed smooth functions?

[L.-Zhuang-Lei-Liao, NeurIPS'22; Crawshaw-Bao-L., ICLR'23; Crawshaw-Bao-L., NeurIPS'23]

#### FedAvg (a.k.a., Local SGD)



Local SGD (FedAvg): Multiple SGD updates on each device before communication

Reduced Communication Cost: FedAvg is the default algorithm in FL, but only works for smooth problems

Q: How to design computation and communication-efficient algorithms for relaxed smooth problems such as RNN, LSTM, Transformers?

#### Communication-Efficient Federated Learning Algorithms for Relaxed Smooth Functions

## **Problem Setup (Homogeneous Data)**

Model Parameter

 $\min_{\mathbf{x}\in\mathbb{R}^d}f(\mathbf{x}) := \mathbb{E}_{\boldsymbol{\xi}\sim\mathcal{D}}[F(\mathbf{x};\boldsymbol{\xi})]$ 

•  $f(\mathbf{x})$  is  $(L_0, L_1)$ -smooth:  $\|\nabla^2 f(\mathbf{x})\| \le L_0 + L_1 \|\nabla f(\mathbf{x})\|$  for any  $\mathbf{x} \in \mathbb{R}^d$ 

- $\int_{\mathbf{x}} f(\mathbf{x}_0) \min_{\mathbf{x}} f(\mathbf{x}) \le \Delta$
- For all  $\mathbf{x} \in \mathbb{R}^d$ ,  $\mathbb{E}_{\xi \sim \mathscr{D}} \left[ \nabla F(\mathbf{x}; \xi) \right] = \nabla f(\mathbf{x})$ ,  $\| \nabla F(\mathbf{x}; \xi) - \nabla f(\mathbf{x}) \| \leq \sigma$  almost surely
- The stochastic gradient noise is unimodal and symmetric



Unimodal and Symmetric Noise in training LSTMs [L.-Zhuang-Lei-Liao, NeurIPS 22]

#### **Communication-Efficient Local Gradient Clipping**

[L.-Zhuang-Lei-Liao, NeurIPS 22]

Algorithm 1 Communication Efficient Local Gradient Clipping (CELGC)

- 1: for t = 0, ..., T do
- 2: Each node *i* samples its stochastic gradient  $\nabla F(\mathbf{x}_t^i; \xi_t^i)$ , where  $\xi_t^i \sim \mathcal{D}$ .
- 3: Each node *i* updates it local solution **in parallel**:

Local gradient clipping

$$\mathbf{x}_{t+1}^{i} = \mathbf{x}_{t}^{i} - \min\left(\eta, \frac{\gamma}{\|\nabla F(\mathbf{x}_{t}^{i}; \xi_{t}^{i})\|}\right) \nabla F(\mathbf{x}_{t}^{i}; \xi_{t}^{i})$$
# of local steps
$$(2)$$

4: **if** t is a multiple of I **then** 

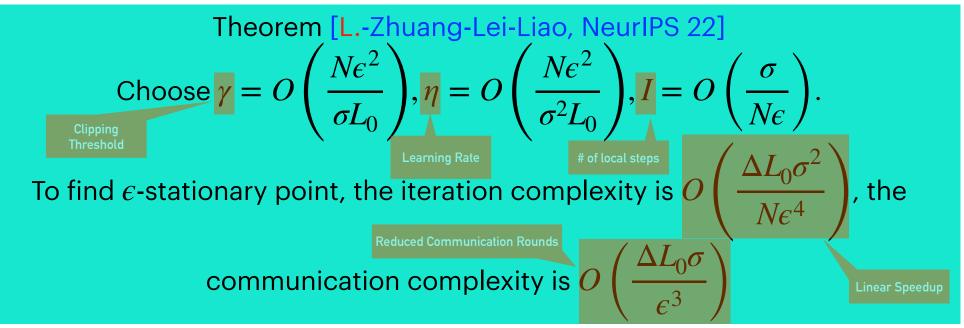
5: Each worker resets the local solution as the averaged solution across nodes:

$$\mathbf{x}_{t}^{i} = \widehat{\mathbf{x}} := \frac{1}{N} \sum_{j=1}^{N} \mathbf{x}_{t}^{j} \qquad \forall i \in \{1, \dots, N\}$$
Periodically averages model every I steps
(3)

- 6: **end if**
- 7: end for

#### Linear Speedup and Reduced Communication Complexity

- N: number of machines,  $\sigma$ : standard deviation in stochastic gradient
- Goal: finding  $\epsilon$ -stationary point: an solution **x** such that  $\|\nabla f(\mathbf{x})\| \leq \epsilon$



# Analysis Roadmap

- At *t*-th iteration, define the indices of clients who perform clipping or not  $J(t) = \{i \in [N] : \|\nabla F(\mathbf{x}_t^i; \xi_t^i)\| \ge \gamma/\eta\}, \overline{J}(t) = [N] \setminus J(t)$
- For either  $i \in J(t)$  or  $i \in \overline{J}(t)$ , we show it decreases the loss function value sufficiently
- The local steps skip communication and introduce error, but the error can be controlled when the # of local steps is not extremely large
- Choose learning rate, clipping threshold, and # of local steps, we get linear speedup (because we are using N machines) and reduced communication rounds (due to the local steps)

# **Technical Challenges and Solutions**

- The analysis roadmap looks so easy, but there are certain challenges:
  - Difficulty 1: The standard descent lemma in smooth case does not work
  - Solution: We introduce a new descent lemma in relaxed smooth setting and amenable to local steps
    - If the learning rate is small, the loss function monotonically decreases when synchronization occurs, even if the landscape is not smooth
    - Local steps do not hurt too much

# **Technical Challenges and Solutions**

- Difficulty 2: The stochastic gradient for the non-clipping client is  $\nabla F(\mathbf{x}_t^i; \xi_t^i) \mathbb{I}(\|F(\mathbf{x}_t^i; \xi_t^i)\| \le \alpha)$ , which may not follow the right direction due to the dependency between random variables
- Consider the following example (g: stochastic gradient):

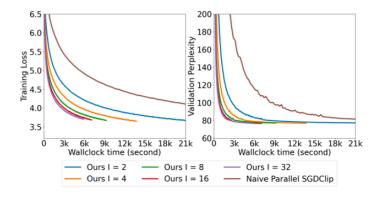
• 
$$Pr(g = 2) = 0.2, Pr(g = -2) = 0.3, Pr(g = 3) = 0.5, \alpha = 2$$

• 
$$\mathbb{E}\left[g \cdot \mathbb{I}(g \le \alpha)\right] = -0.2$$
, but  $\mathbb{E}\left[g\right] = 1.3$ , different directions

- Solution: the distributional assumption (unimodal and symmetric noise)

## **Experiments**

- Train deep neural networks on 8 V100 GPUs
- Consider two tasks: language modeling and image classification
- Compare our algorithm with different I versus the naive parallel algorithm



Language Modeling on WikiText-2 on AWD-LSTM

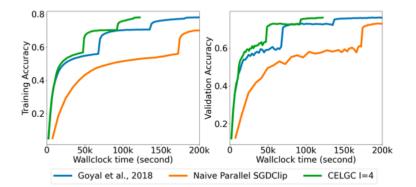
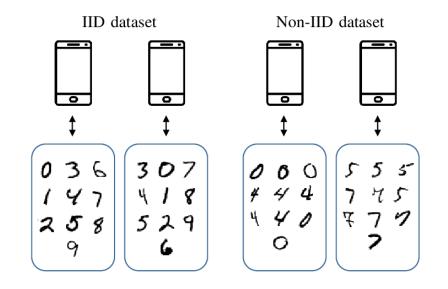


Image Classification on ImageNet with ResNet

Gradient clipping with local steps does not hurt the convergence, instead accelerates the training!

#### From i.i.d. Data to Non-i.i.d. Data

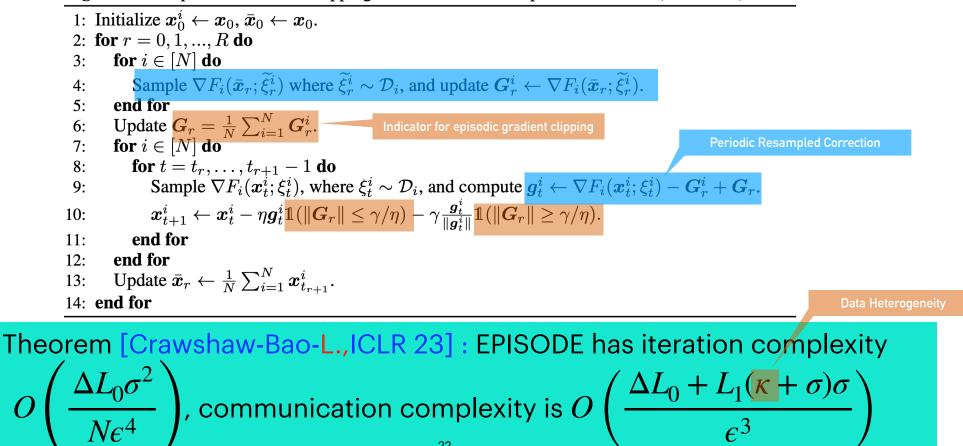


#### **Does Local Gradient Clipping Work for Heterogeneous Data?**

- The different client has different data distribution  $\min_{\mathbf{x}\in\mathbb{R}^d} f(\mathbf{x}) := \frac{1}{N} \sum_{i=1}^N f_i(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^N \mathbb{E}_{\xi_i \sim \mathcal{D}_i}[F(\mathbf{x};\xi_i)]$
- The Local Gradient Clipping Algorithm does not work:
  - Consider the two clients case:  $f_1(x) = \frac{1}{2}x^2 + a_1x$ ,  $f_2(x) = \frac{1}{2}x^2 + a_2x$
  - $a_1 = -\gamma 1$ ,  $a_2 = \gamma + 2$ ,  $\gamma > 1$ ,  $\gamma$  is the clipping threshold
  - Optimal solution is  $x_* = -\frac{a_1 + a_2}{2} = -\frac{1}{2}$
  - Start from 0, run the local gradient clipping with learning rate 1 on each client for 1 iteration: the algorithm gets  $\gamma$  and  $-\gamma$  on two clients respectively, the averaged model parameter becomes 0 again (the algorithm gets stuck!)

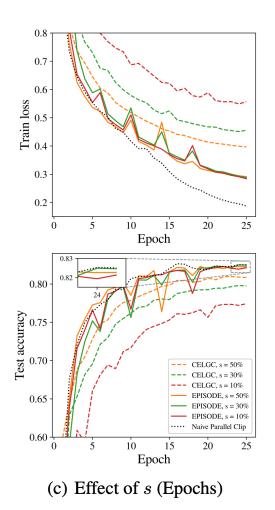
# **EPISODE** (for Heterogeneous Data)

Algorithm 1: Episodic Gradient Clipping with Periodic Resampled Corrections (EPISODE)



# **Proof Technique Overview**

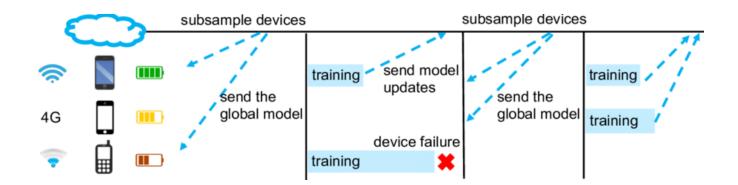
- New localization Lemma:
  - In each communication round, the iterates of EPISODE stay in a bounded region almost surely, where the function is locally L-smooth
  - The radius of the bounded region does not depend on the data heterogeneity ( $\kappa$ ), this is the key to show that the iteration complexity does not depend on  $\kappa$
  - Each communication rounds the function value will decrease sufficiently



# **Experiments**

- Train a recurrent neural network on SNLI dataset (text classification) on eight GPUs
- Heterogeneous data: larger similarity
   (s) indicates smaller heterogeneity
- EPISODE does not suffer from high heterogeneity, while local gradient clipping (CELGC) suffers from data heterogeneity significantly

#### From Full Client Participation to Partial Client Participation



#### **EPISODE++ Algorithm for Partial Client Participation**

#### Algorithm 1 EPISODE++

| 1:  | Initialize $\bar{\boldsymbol{x}}_0, \boldsymbol{G}_0^i \leftarrow \nabla F_i(\bar{\boldsymbol{x}}_0, \tilde{\xi}_i), \boldsymbol{G}_0 \leftarrow \frac{1}{N} \sum_{i=1}^N \boldsymbol{G}_0^i$                                                                       |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2:  | for $r = 0, 1,, R - 1$ do                                                                                                                                                                                                                                           |  |
| 3:  | Sample $S_r \subset [N]$ uniformly at random such that $ S_r  = S$                                                                                                                                                                                                  |  |
| 4:  | for $i \in \mathcal{S}_r$ do                                                                                                                                                                                                                                        |  |
| 5:  | $oldsymbol{x}_{r,0}^i \leftarrow oldsymbol{ar{x}}_r$                                                                                                                                                                                                                |  |
| 6:  | for $k=0,\ldots,I-1$ do                                                                                                                                                                                                                                             |  |
| 7:  | Sample $ abla F_i(oldsymbol{x}^i_{r,k}; \xi^i_{r,k})$ , where $\xi^i_{r,k} \sim \mathcal{D}_i$                                                                                                                                                                      |  |
| 8:  | $oldsymbol{g}_{r,k}^i \leftarrow  abla F_i(oldsymbol{x}_{r,k}^i;oldsymbol{\xi}_{r,k}^i) - oldsymbol{G}_r^i + oldsymbol{G}_r$                                                                                                                                        |  |
| 9:  | $\boldsymbol{x}_{r,k+1}^i \leftarrow \boldsymbol{x}_{r,k}^i - \eta \boldsymbol{g}_{r,k}^i \mathbb{1}_{\ \boldsymbol{G}_r\  \leq \gamma/\eta} - \gamma \frac{\boldsymbol{g}_{r,k}^i}{\ \boldsymbol{g}_{r,k}^i\ } \mathbb{1}_{\ \boldsymbol{G}_r\  \geq \gamma/\eta}$ |  |
| 10: | end for                                                                                                                                                                                                                                                             |  |
| 11: | $oldsymbol{G}_{r+1}^i \leftarrow rac{1}{I} \sum_{k=0}^{I-1}  abla F_i(oldsymbol{x}_{r,k}^i; \xi_{r,k}^i)$                                                                                                                                                          |  |
| 12: | $\Delta oldsymbol{G}_r^i \leftarrow oldsymbol{G}_{r+1}^i - oldsymbol{G}_r^i$                                                                                                                                                                                        |  |
| 13: | end for                                                                                                                                                                                                                                                             |  |
| 14: | Update $ar{m{x}}_{r+1} \leftarrow rac{1}{S} \sum_{i \in \mathcal{S}_r} m{x}^i_{r,I}$                                                                                                                                                                               |  |
| 15: | Update $oldsymbol{G}_{r+1} \leftarrow oldsymbol{G}_r + rac{1}{N}\sum_{i\in\mathcal{S}_r}\Deltaoldsymbol{G}_r^i$                                                                                                                                                    |  |
| 16: | Denote $oldsymbol{G}_{r+1}^i \leftarrow oldsymbol{G}_r^i$ for all $i \notin \mathcal{S}_r$                                                                                                                                                                          |  |
| 17: | 17: end for                                                                                                                                                                                                                                                         |  |



#### Provable Advantage over Clipped Minibatch SGD

- Baseline: Minibatch SGD (no local update, just local accumulation of batch size with one update before communication)
- It is proved by [Woodworth et al.'20] that minibatch SGD is always better than local SGD for heterogeneous data and full client participation
- In federated learning, we only have partial client participation
- We show that clipped minibatch SGD could be worse than EPISODE++ in the presence of partial client participation and unbounded smoothness

## Hardness Results of Clipped Minibatch SGD

Algorithm 2 Clipped Minibatch SGD

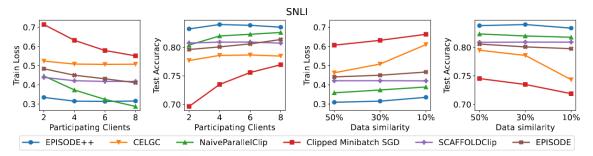
1: Initialize  $\boldsymbol{x}_0$ 2: for r = 0, 1, ..., R - 1 do 3: Sample  $S_r \subset [N]$  uniformly at random such that  $|S_r| = S$ 4:  $\boldsymbol{g}_r = \frac{1}{SI} \sum_{i \in S_r} \sum_{k=0}^{I-1} \nabla F_i(\boldsymbol{x}_r, \xi_{r,k}^i)$ 5: Update  $\boldsymbol{x}_{r+1} \leftarrow \boldsymbol{x}_r - \min\left(\eta, \frac{\gamma}{\|\boldsymbol{g}_r\|}\right) \boldsymbol{g}_r$ 6: end for

Theorem [Crawshaw-Bao-L.,NeurIPS 23] : Fix  $\epsilon > 0$ ,  $L_0 > 0$ ,  $L_1 > 0$ ,  $M > \max(L_0/L_1, \epsilon)$ , and  $x_0 \in \mathbb{R}$ . Pick any constant learning rate  $\eta$  and threshold  $\gamma$  based on the knowledge of above constants. There exists a function instance  $\{f_i\}_{i=1}^N$  such as clipped minibatch SGD initialized at  $x_0$ has communication complexity  $\Omega\left(\frac{\Delta ML_1}{\epsilon^2}\right)$  with high probability, where Mis the gradient upper bound (may be very large, e.g., exploding gradient)

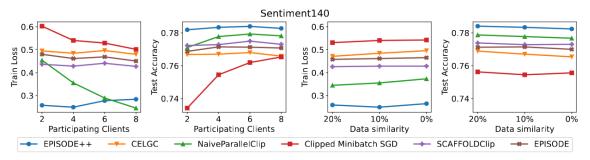
## **Proof Sketch of the Lower Bounds**

- We analyze clipped minibatch SGD for three problem instances.
  - For linear objective function with high heterogeneity: if the clipping threshold is small (i.e.,  $\gamma/\eta \leq M$ ), then the clipped minibatch SGD will never converge with probability  $\delta$
  - For homogeneous exponential local objective, clipped minibatch SGD cannot converge if the learning rate is not sufficiently small (i.e.,  $\eta \ge 1/L_1 M$ )
  - For a large clipping threshold (i.e.,  $\gamma/\eta \ge M$ ) and small learning rate (i.e.,  $\eta \le 1/L_1 M$ ), the convergence rate of clipped minibatch SGD will depend on M for the third problem instance with homogeneous linear objectives

#### **Experiments**



(a) Training loss and testing accuracy for SNLI dataset.

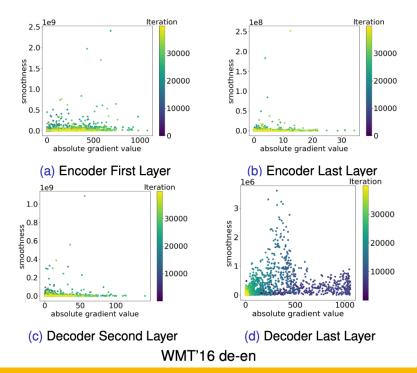


(b) Training loss and testing accuracy for Sentiment140 dataset.

Figure 1: Final training loss and testing accuracy for all algorithms, as participation ratio and data similarity varies. (a) and (b) show results for SNLI and Sentiment140, respectively.

# An Adaptive Gradient Algorithm for Layer-Wise Relaxed Smooth Functions

#### Layer-wise Relaxed Smoothness in Transformer



Relaxed smoothness parameters differ from layer to layer [Crawshaw-L.-Orabona-Zhang-Zhuang, NeurIPS'22]

Q: How to formally define layer-wise relaxed smoothness? Why people use Adam for training Transformers? Can we take advantage of this assumption to design better adaptive algorithms for training Transformers?

### **Coordinate-wise Relaxed Smoothness**

• Let  $\boldsymbol{L}_0 := [L_{0,1}, \dots, L_{0,d}]^{\top}$  and  $\boldsymbol{L}_1 := [L_{1,1}, \dots, L_{1,d}]^{\top}$ , A differentiable function  $F(\mathbf{x})$  is  $(\boldsymbol{L}_0, \boldsymbol{L}_1)$ -smooth coordinate-wisely, if for any  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$  such that  $\|\mathbf{x} - \mathbf{y}\| \leq \frac{1}{\|\boldsymbol{L}_1\|_{\infty}}$ , we have

$$\left|\frac{\partial F}{\partial x_j}(\mathbf{y}) - \frac{\partial F}{\partial x_j}(\mathbf{x})\right| \le \left(\frac{L_{0,j}}{\sqrt{d}} + L_{1,j} \left|\frac{\partial F}{\partial x_j}(\mathbf{x})\right|\right) \|\mathbf{y} - \mathbf{x}\|_2, \, \forall j \in [d]$$

- When  $L_{0,j} = L_0$  and  $L_{1,j} = L_1$  for all  $j \in [d]$ , we recover the normal version of this assumption
- Can we analyze modern coordinate-wise algorithms with this assumption?
- Do we need gradient clipping?

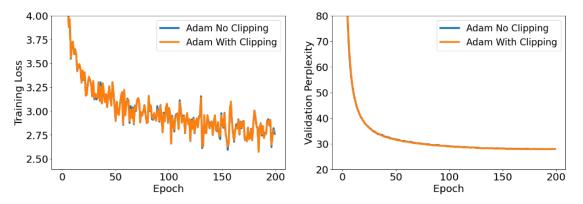
## Adam Algorithm (Coordinate-Wise Update)

[PDF] arxiv.org

Adam: A method for stochastic optimization <u>DP Kingma</u>, <u>J Ba</u> - arXiv preprint arXiv:1412.6980, 2014 - arxiv.org ... to first-order methods. We propose Adam, a method for efficient stochastic optimization that only ... The method computes individual adaptive learning rates for different parameters from ... ☆ Save 切 Cite Cited by 123807 Related articles All 25 versions ≫

$$\begin{split} & m_0 \leftarrow 0 \text{ (Initialize 1}^{\text{st}} \text{ moment vector)} \\ & v_0 \leftarrow 0 \text{ (Initialize 2}^{\text{nd}} \text{ moment vector)} \\ & t \leftarrow 0 \text{ (Initialize timestep)} \\ & \textbf{while } \theta_t \text{ not converged } \textbf{do} \\ & t \leftarrow t+1 \\ & g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) \text{ (Get gradients w.r.t. stochastic objective at timestep } t) \\ & m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t \text{ (Update biased first moment estimate)} \\ & v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 \text{ (Update biased second raw moment estimate)} \\ & \widehat{m}_t \leftarrow m_t/(1 - \beta_1^t) \text{ (Compute bias-corrected first moment estimate)} \\ & \widehat{v}_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t/(\sqrt{\widehat{v}_t} + \epsilon) \text{ (Update parameters)} \\ & \textbf{end while} \end{split}$$

#### **Gradient Clipping Might Be Implicit in Adam-type Algorithms**



- Adam optimizer with and without gradient clipping
- Train a 16-layer GPT-2 transformer model to do language modeling (word level) in the Wikitext-103 dataset
  - Minibatch size is 256, learning rate warmup and cosine annealing
- Adam has almost a bounded update and clipping seems not necessary

#### A New Adam-type Algorithm (Generalized SignSGD)

**Algorithm** Generalized SignSGD (All operations on vectors are element-wise)

1: Inputs:  $\boldsymbol{x}_{1}, \beta_{1}, \beta_{2}, \eta$ 2:  $\boldsymbol{m}_{0} = 0, \, \boldsymbol{v}_{0} = 0$ 3: for  $t = 1, \dots, T$  do 4: Compute  $\boldsymbol{g}_{t}$ , an unbiased estimate of  $\nabla F(\boldsymbol{x}_{t})$ 5:  $\boldsymbol{m}_{t} = \beta_{1} \boldsymbol{m}_{t-1} + (1 - \beta_{1}) \boldsymbol{g}_{t}$ 6:  $\boldsymbol{v}_{t} = \beta_{2} \boldsymbol{v}_{t-1} + (1 - \beta_{2}) \boldsymbol{m}_{t}^{2}$ 7:  $\boldsymbol{x}_{t+1} = \boldsymbol{x}_{t} - \eta \frac{\boldsymbol{m}_{t}}{\sqrt{\boldsymbol{v}_{t}}}$ 8: end for

Difference with Adam:  $\mathbf{v}_t = \beta_2 \mathbf{v}_{t-1} + (1 - \beta_2) \mathbf{g}_t^2$ 

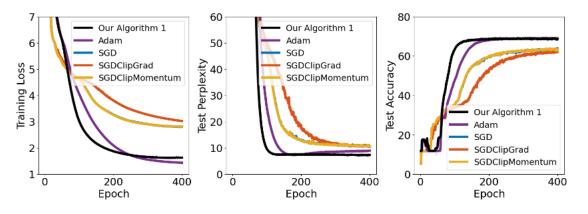
# **Theoretical Convergence Guarantee (I)**

Theorem [Crawshaw-L.-Orabona-Zhang-Zhuang, NeurIPS 22] Run generalized SGD algorithm for *T* iterations, there exists setting for  $\eta$ ,  $\beta_1$ ,  $\beta_2$ such that with high probability,  $\min_{t \in [T]} \|\nabla F(\mathbf{x}_t)\|_1 \leq \tilde{O}\left(\frac{\|\sigma\|_1}{T^{1/4}} + \frac{1}{\sqrt{T}}\right) + \tilde{O}\left((\|\mathbf{M}\|_1 + \|\sigma\|_1)\exp(-T^{1/4})\right),$ where  $\mathbf{M}_j = \sup\left\{\left|\frac{\partial F}{\partial x_j}(\mathbf{x})\right| : F(\mathbf{x}) \leq F(\mathbf{x}_0)\right\} < +\infty$ 

### **Theoretical Convergence Guarantee (II)**

Theorem [Crawshaw-L.-Orabona-Zhang-Zhuang, NeurIPS 22] Run generalized SGD with  $\beta_2 = 0$  for T iterations, we have with high probability $\min_{t \in [T]} \|\nabla F(\mathbf{x}_t)\|_1 \leq \tilde{O}\left(\frac{\|\sigma\|_1}{T^{1/4}} + \frac{1}{\sqrt{T}}\right)$ 

# **Transformer on Translation Task**



- Train a 6-layer Transformer on WMT'16 German-English Translation Task
  - Mini-batch size is 256
  - Learning rate warm-up and decay
  - Training+testing with best hyperparameters repeated 5 times with different random seeds

# Summary

- Relaxed Smoothness condition in deep learning is widely-used
- Communication-efficient federated learning algorithm for relaxed smooth functions with homogeneous and heterogeneous data [L.-Zhuang-Lei-Liao, NeurIPS'22, Crawshaw-Bao-L., ICLR'23]
- New algorithms for partial client participation in federated learning for relaxed smooth functions and lower bounds [Crawshaw-Bao-L., NeurIPS'23]
- An Adam-type algorithm (generalized signSGD) for relaxed smooth functions which is competitive to best-tuned Adam [Crawshaw-L.-Zhang-Orabona-Zhuang, NeurIPS'22]

#### **Acknowledgments**













Michael Crawshaw PhD Student CS@George Mason

Yajie Bao PhD Student Statistics@SJTU

Zhenxun Zhuang **Research Scientist** Meta Platforms

Wei Zhang Researcher IBM T. J. Watson

Francesco Orabona Associate Professor ECE@ Boston University Univ of Hong Kong

Yunwen Lei Assistant Professor













#### Thank you for your attention!

