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Empirical Success of Deep Learning

Computer Vision (Convolutional NN) Natural Language Processing (Recurrent 
NN, Transformer)

Generative Modeling (Generative Adversarial Networks) Game (Reinforcement Learning, Policy NN)2



Deep Neural Networks: Nonconvex Optimization

x → fw(x) = wL ∘ σ (…σ (w2 ∘ σ(w1 ∘ x)))
min

w
𝔼x,y [ℓ( fw(x), y)]

Alexnet:
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The workhorse in Machine Learning

• Stochastic Gradient Descent (SGD) [Robbins-Monro’51] 

• Sample  uniformly 

•

(xt, yt)

wt+1 = wt − ηt ∇ℓ(wt, xt, yt)

min
w

𝔼x,y [ℓ( fw(x), y)]

Learning rate

Stochastic gradient
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Stochastic Gradient Descent



Assumptions in Optimization for Deep Learning
• Which assumption should we use for analyzing deep learning optimization 

such as SGD? 

• We all like the “smoothness” assumption: 

• -smooth function:  

• In a smooth function,  

• Gradient goes to zero approaching to a local or global minimum, even if 
nonconvex 

• The function is upper bounded by a quadratic function 

• SGD can decrease the loss monotonically in expectation (a.k.a., descent 
lemma)

L ∥∇F(x) − ∇F(y)∥ ≤ L∥x − y∥
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Gradient Explosion in Recurrent Neural Networks 

• Gradient will explode for long input if the recurrent matrix  has 
eigenvalue > 1 

• The standard smoothness assumption does not hold

W
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Unbounded Smoothness
• Smoothness is not satisfied in many cases 

• e.g., all univariate polynomials such as  

• More importantly, [Zhang et al. ICLR’20] showed that deep neural 
networks have unbounded smoothness (e.g., gradient explosion) 

• [Zhang et al. ICLR’20] introduced a weaker notion called “relaxed 
smoothness” or -smoothness, and showed it holds for LSTMs 

•

x4, exp(x)

(L0, L1)

∥∇2F(x)∥ ≤ L0 + L1∥∇F(x)∥
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Transformers Satisfy Relaxed Smoothness

[Vaswani et al. NeurIPS’17] We show that transformers satisfy relaxed smoothness 
[Crawshaw-L.-Orabona-Zhang-Zhuang, NeurIPS’22]
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SGD with Gradient Clipping under -smoothness(L0, L1)
• Gradient clipping ensures SGD’s convergence under -smoothness 

[Zhang et al. ICLR’20]
(L0, L1)
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• Gradient clipping is necessary because relaxed smoothness can make the 
gradient exponentially large [Zhang et al. ICLR’20] 

• But this algorithm is not scalable in large-scale federated deep learning



Motivation (Federated Learning)

How to design scalable algorithms in  
federated learning setting  

for relaxed smooth functions? 
[L.-Zhuang-Lei-Liao, NeurIPS’22; Crawshaw-Bao-L., ICLR’23; Crawshaw-Bao-L., NeurIPS’23]
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• Data is not shared 

• Communication is expensive 

• Data might not be i.i.d. 

• Federated Learning (FL) 
[Mcmahan-Moore-Ramage-
Hampson-Arcas, AISTATS’17]



FedAvg (a.k.a., Local SGD) 

Local SGD (FedAvg): 
Multiple SGD updates on each 
device before communication

Reduced Communication Cost: FedAvg is the default algorithm in FL, but only works for smooth problems

Q: How to design computation and communication-efficient algorithms for relaxed 
smooth problems such as RNN, LSTM, Transformers?
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Communication-Efficient Federated Learning 
Algorithms for Relaxed Smooth Functions
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Problem Setup (Homogeneous Data)

•  is -smooth: 

 for any  

•  

• For all , , 

 almost surely 

• The stochastic gradient noise is unimodal 
and symmetric

f(x) (L0, L1)
∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥ x ∈ ℝd

f(x0) − min
x

f(x) ≤ Δ

x ∈ ℝd 𝔼ξ∼𝒟 [∇F(x; ξ)] = ∇f(x)
∥∇F(x; ξ) − ∇f(x)∥ ≤ σ

min
x∈ℝd

f(x) := 𝔼ξ∼𝒟[F(x; ξ)]

Data DistributionModel Parameter

Unimodal and Symmetric Noise in training LSTMs 
[L.-Zhuang-Lei-Liao, NeurIPS 22]
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Communication-Efficient Local Gradient Clipping

# of local steps

Periodically averages model every I steps

Local gradient clipping
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[L.-Zhuang-Lei-Liao, NeurIPS 22]  



Linear Speedup and Reduced Communication Complexity
• : number of machines, : standard deviation in stochastic gradient 

• Goal: finding -stationary point: an solution  such that 

N σ

ϵ x ∥∇f(x)∥ ≤ ϵ
Theorem [L.-Zhuang-Lei-Liao, NeurIPS 22]  

Choose .  

To find -stationary point, the iteration complexity is , the 

communication complexity is 

γ = O ( Nϵ2

σL0 ), η = O ( Nϵ2

σ2L0 ), I = O ( σ
Nϵ )

ϵ O ( ΔL0σ2

Nϵ4 )
O ( ΔL0σ

ϵ3 )

Clipping 
Threshold

Learning Rate # of local steps

Linear Speedup

Reduced Communication Rounds
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Analysis Roadmap
• At -th iteration, define the indices of clients who perform clipping or not 

 

• For either  or  , we show it decreases the loss function value 
sufficiently 

• The local steps skip communication and introduce error, but the error can be 
controlled when the # of local steps is not extremely large 

• Choose learning rate, clipping threshold, and # of local steps, we get linear 
speedup (because we are using  machines) and reduced communication 
rounds (due to the local steps)

t
J(t) = {i ∈ [N] : ∥∇F(xi

t; ξi
t)∥ ≥ γ/η}, J̄(t) = [N]∖J(t)

i ∈ J(t) i ∈ J̄(t)

N
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Technical Challenges and Solutions
• The analysis roadmap looks so easy, but there are certain challenges: 

• Difficulty 1: The standard descent lemma in smooth case does not work 

• Solution: We introduce a new descent lemma in relaxed smooth setting 
and amenable to local steps 

• If the learning rate is small, the loss function monotonically decreases 
when synchronization occurs, even if the landscape is not smooth 

• Local steps do not hurt too much
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Technical Challenges and Solutions
• Difficulty 2: The stochastic gradient for the non-clipping client is 

, which may not follow the right direction due 
to the dependency between random variables 

• Consider the following example ( : stochastic gradient): 

•    ,  

• , but , different directions  

• Solution: the distributional assumption (unimodal and symmetric noise) 

• a new Lemma to show that the expectation of stochastic gradient in the 
non-clipping client aligns with the true gradient up to a constant factor: 

∇F(xi
t; ξi

t)𝕀(∥F(xi
t; ξi

t)∥ ≤ α)

g

Pr(g = 2) = 0.2, Pr(g = − 2) = 0.3, Pr(g = 3) = 0.5 α = 2

𝔼 [g ⋅ 𝕀( |g | ≤ α)] = − 0.2 𝔼 [g] = 1.3

𝔼 [g𝕀(∥g∥ ≤ α)] = Pr(∥g∥ ≤ α)Λ𝔼[g], Λ = diag(c1, …, cd),0 < ci ≤ 1
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Experiments

Language Modeling on WikiText-2 on AWD-LSTM Image Classification on ImageNet with ResNet

• Train deep neural networks on 8 V100 GPUs 

• Consider two tasks: language modeling and image classification 

• Compare our algorithm with different  versus the naive parallel algorithmI

Gradient clipping with local steps does not hurt the convergence, instead accelerates the training!
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From i.i.d. Data to Non-i.i.d. Data



Does Local Gradient Clipping Work for Heterogeneous Data?
• The different client has different data distribution 

• The Local Gradient Clipping Algorithm does not work: 

• Consider the two clients case:  

• ,   is the clipping threshold 

• Optimal solution is  

• Start from 0, run the local gradient clipping with learning rate 1 on each client 
for 1 iteration: the algorithm gets  and  on two clients respectively, the 
averaged model parameter becomes 0 again (the algorithm gets stuck!)

f1(x) =
1
2

x2 + a1x, f2(x) =
1
2

x2 + a2x

a1 = − γ − 1, a2 = γ + 2, γ > 1 γ

x* = −
a1 + a2

2
= −

1
2

γ −γ

min
x∈ℝd

f(x) :=
1
N

N

∑
i=1

fi(x) =
1
N

N

∑
i=1

𝔼ξi∼𝒟i
[F(x; ξi)]
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EPISODE (for Heterogeneous Data)

Indicator for episodic gradient clipping
Periodic Resampled Correction

Theorem [Crawshaw-Bao-L.,ICLR 23] : EPISODE has iteration complexity 

, communication complexity is O ( ΔL0σ2

Nϵ4 ) O ( ΔL0 + L1(κ + σ)σ
ϵ3 )

Data Heterogeneity
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 Proof Technique Overview

• New localization Lemma: 

• In each communication round, the iterates of EPISODE stay in a 
bounded region almost surely, where the function is locally L-smooth 

• The radius of the bounded region does not depend on the data 
heterogeneity ( ), this is the key to show that the iteration complexity 
does not depend on  

• Each communication rounds the function value will decrease 
sufficiently

κ
κ
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Experiments
• Train a recurrent neural network on 

SNLI dataset (text classification) on 
eight GPUs 

• Heterogeneous data: larger similarity 
(s) indicates smaller heterogeneity  

• EPISODE does not suffer from high 
heterogeneity, while local gradient 
clipping (CELGC) suffers from data 
heterogeneity significantly 
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From Full Client Participation to Partial 
Client Participation
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EPISODE++ Algorithm for Partial Client Participation

Theorem [Crawshaw-Bao-L.,NeurIPS 23] : EPISODE++ has iteration complexity 

, communication complexity is O ( ΔL0σ2

Sϵ4 ) O ( ΔL0 + L1(κ + σ)σ
ϵ3 )

Data Heterogeneity

Number of subsampled clients
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Provable Advantage over Clipped Minibatch SGD
• Baseline: Minibatch SGD (no local update, just local accumulation of 

batch size with one update before communication) 

• It is proved by [Woodworth et al.’20] that minibatch SGD is always better 
than local SGD for heterogeneous data and full client participation 

• In federated learning, we only have partial client participation  

• We show that clipped minibatch SGD could be worse than EPISODE++ in 
the presence of partial client participation and unbounded smoothness
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Hardness Results of Clipped Minibatch SGD

Theorem [Crawshaw-Bao-L.,NeurIPS 23] : Fix , , , 

, and . Pick any constant learning rate  and 

threshold  based on the knowledge of above constants. There exists a 
function instance  such as clipped minibatch SGD initialized at   

has communication complexity   with high probability, where  

is the gradient upper bound (may be very large, e.g., exploding gradient)

ϵ > 0 L0 > 0 L1 > 0
M > max(L0/L1, ϵ) x0 ∈ ℝ η

γ
{fi}N

i=1 x0

Ω ( ΔML1

ϵ2 ) M
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Proof Sketch of the Lower Bounds
• We analyze clipped minibatch SGD for three problem instances. 

• For linear objective function with high heterogeneity: if the clipping 
threshold is small (i.e., ), then the clipped minibatch SGD will never 
converge with probability  

• For homogeneous exponential local objective, clipped minibatch SGD 
cannot converge if the learning rate is not sufficiently small (i.e., ) 

• For a large clipping threshold (i.e., ) and small learning rate (i.e., 
), the convergence rate of clipped minibatch SGD will depend on 

 for the third problem instance with homogeneous linear objectives

γ/η ≤ M
δ

η ≥ 1/L1M

γ/η ≥ M
η ≤ 1/L1M
M
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Experiments
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An Adaptive Gradient Algorithm for 
Layer-Wise Relaxed Smooth Functions
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Layer-wise Relaxed Smoothness in Transformer

Relaxed smoothness parameters differ from layer to layer 
[Crawshaw-L.-Orabona-Zhang-Zhuang, NeurIPS’22]

Q: How to formally define layer-wise relaxed smoothness? Why people use Adam 
for training Transformers? Can we take advantage of this assumption to design 

better adaptive algorithms for training Transformers? 
32



Coordinate-wise Relaxed Smoothness
• Let  and , A differentiable 

function  is -smooth coordinate-wisely, if for any 

such that , we have

L0 := [L0,1, …, L0,d]⊤ L1 := [L1,1, …, L1,d]⊤

F(x) (L0, L1) x, y ∈ ℝd

∥x − y∥ ≤
1

∥L1∥∞

∂F
∂xj

(y) −
∂F
∂xj

(x) ≤
L0,j

d
+ L1,j

∂F
∂xj

(x) ∥y − x∥2, ∀j ∈ [d]

• When  and  for all , we recover the normal 
version of this assumption 

• Can we analyze modern coordinate-wise algorithms with this assumption? 

• Do we need gradient clipping?

L0,j = L0 L1,j = L1 j ∈ [d]
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Adam Algorithm (Coordinate-Wise Update)
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Gradient Clipping Might Be Implicit in Adam-type Algorithms

• Adam optimizer with and without gradient clipping 

• Train a 16-layer GPT-2 transformer model to do language modeling (word 
level) in the Wikitext-103 dataset 

• Minibatch size is 256, learning rate warmup and cosine annealing 

• Adam has almost a bounded update and clipping seems not necessary
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A New Adam-type Algorithm (Generalized SignSGD)
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Theoretical Convergence Guarantee (I)
Theorem [Crawshaw-L.-Orabona-Zhang-Zhuang, NeurIPS 22]  

Run generalized SGD algorithm for  iterations, there exists setting for  
such that with high probability, 

, 

where 

T η, β1, β2

min
t∈[T]

∥∇F(xt)∥1 ≤ Õ ( ∥σ∥1

T1/4
+

1

T ) + Õ ((∥M∥1 + ∥σ∥1)exp(−T1/4))

Mj = sup
∂F
∂xj

(x) : F(x) ≤ F(x0) < + ∞
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Theoretical Convergence Guarantee (II)

Theorem [Crawshaw-L.-Orabona-Zhang-Zhuang, NeurIPS 22]  
Run generalized SGD with  for  iterations, we have with high probabilityβ2 = 0 T

min
t∈[T]

∥∇F(xt)∥1 ≤ Õ ( ∥σ∥1

T1/4
+

1

T )
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Transformer on Translation Task

• Train a 6-layer Transformer on WMT'16 German-English Translation Task 

• Mini-batch size is 256 

• Learning rate warm-up and decay 

• Training+testing with best hyperparameters repeated 5 times with 
different random seeds
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Summary
• Relaxed Smoothness condition in deep learning is widely-used 

• Communication-efficient federated learning algorithm for relaxed smooth 
functions with homogeneous and heterogeneous data  [L.-Zhuang-Lei-Liao, 
NeurIPS’22, Crawshaw-Bao-L., ICLR’23] 

• New algorithms for partial client participation in federated learning for 
relaxed smooth functions and lower bounds [Crawshaw-Bao-L., NeurIPS’23] 

• An Adam-type algorithm (generalized signSGD) for relaxed smooth functions 
which is competitive to best-tuned Adam [Crawshaw-L.-Zhang-Orabona-
Zhuang, NeurIPS’22]
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