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Empirical Success of Deep Learning
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Deep Neural Networks: Nonconvex Optimization
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The workhorse in Machine Learning

Stochastic Gradient Descent

min E, , [£(fy(x), )]
W
« Stochastic Gradient Descent (SGD) [Robbins-Monro’51]

. Sample (X,, y,) uniformly

Stochastic gradient

- Wy =W, — i VE(WL X))

Gradient Descent '



Assumptions in Optimization for Deep Learning

- Which assumption should we use for analyzing deep learning optimization
such as SGD?

- We all like the “smoothness” assumption:

« L-smooth function: [|VF(x) — VF(y)|| < L||x —y|
« In a smooth function,

- Gradient goes to zero approaching to a local or global minimum, even if
nonconvex

- The function is upper bounded by a quadratic function

« SGD can decrease the loss monotonically in expectation (a.k.a., descent
lemma)



Gradient Explosion in Recurrent Neural Networks
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« Gradient will explode for long input if the recurrent matrix W has
eigenvalue > 1

- The standard smoothness assumption does not hold
6



Unbounded Smoothness

- Smoothness is not satisfied in many cases

4

. e.g., all univariate polynomials such as x™, exp(x)

- More importantly, [Zhang et al. ICLR20] showed that deep neural
networks have unbounded smoothness (e.g., gradient explosion)

- [Zhang et al. ICLR'20] introduced a weaker notion called “relaxed
smoothness” or (L, L;)-smoothness, and showed it holds for LSTMs

[VEFXO|l < Ly + Ly VF)




Transformers Satisfy Relaxed Smoothness
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Figure 1: The Transformer - model architecture. (a) Wikitext-z (b) WMT"' 6 de_en

We show that transformers satisfy relaxed smoothness
[Crawshaw-L.-Orabona-Zhang-Zhuang, NeurlPS'22]
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[Vaswani et al. NeurlPS"17]



SGD with Gradient Clipping under (L), L,)-smoothness

. Gradient clipping ensures SGD’s convergence under (L, L;)-smoothness
[Zhang et al. ICLR"20]

Algorithm 1 Pseudo-code for norm clipping the gra-
dients whenever they explode
5 < OF
8 90
if ||g|| > threshold then
A threshold 4
< el &
end if

- Gradient clipping is necessary because relaxed smoothness can make the
gradient exponentially large [Zhang et al. ICLR"20]

 But this algorithm is not scalable in large-scale federated deep learning



Motivation (Federated Learning)

v y « Data is not shared
Private Data Ap® iii . . . .
gL ’ . Communication is expensive
Federated Server Research . . .
‘ . Pt - Data might not be i.i.d.
Global Model 1} U private bata ° Federated Leal’nlng (FL)

e [Mcmahan-Moore-Ramage-
R Hampson-Arcas, AISTATS17]
eeeeeeeeeeeeeeeeeee ’
m Private Dat

How to design scalable algorithms in
federated learning setting
for relaxed smooth functions?
[L.-Zhuang-Lei-Liao, NeurlPS'22; Crawshaw-Bao-L., ICLR’23; Crawshaw-Bao-L., NeurlPS"23]
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FedAvg (a.k.a., Local SGD)

Local SGD (FedAvg):
Multiple SGD updates on each
device before communication

Device 1

L()L‘JI 5( l[)

Device 2

Reduced Communication Cost: FedAvg is the default algorithm in FL, but only works for smooth problems

Q: How to design computation and communication-efficient algorithms for relaxed
smooth problems such as RNN, LSTM, Transformers?

N



Communication-Efficient Federated Learning
Algorithms for Relaxed Smooth Functions



Problem Setup (Homogeneous Data)

min (%) := E; g[F(x; )]

xeR

* f(X) is (L(), Ll)-smooth:
IV2fX)|| < Ly + L, || VAx)|| for any x € R?

. f(Xg) —minf(x) < A

. Forallx € R% E, g | VF(x; &)| = VAX),
|IVF(x; &) — Vf(X)|| < oalmost surely

« The stochastic gradient noise is unimodal
and sym metric Unimodal and Symmetric Noise in training LSTMs
[L.-Zhuang-Lei-Liao, NeurlPS 22]
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Communication-Efficient Local Gradient Clipping
[L.-Zhuang-Lei-Liao, NeurlPS 22]

Algorithm 1 Communication Efficient Local Gradient Clipping (CELGC)

1: fort =0,...,7 do o ’
2:  Each node ¢ samples its stochastic gradient V F'(x}; £} ), where &} ~ D.
3:  Each node ¢ updates it local solution in parallel:

i i : gl i ¢
X;, 1 =X, —min | 7, — VF(x;; 2)
b =t = min (1 oy ) V)
4. if ¢t is a multiple of I then
5: Each worker resets the local solution as the averaged solution across nodes:
. 1 L
x;=§;=Nng Vie {1,...,N} (3)
g=l1l
6: endif
7: end for
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Linear Speedup and Reduced Communication Complexity

« N: number of machines, o: standard deviation in stochastic gradient

. Goal: finding e-stationary point: an solution X such that ||VAX)|| <€

Clipping
Threshold

Learning Rate # of local steps

Reduced Communication Rounds

Linear Speedup
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Analysis Roadmap

At t-th iteration, define the indices of clients who perform clipping or not
J@t) = {i € [N]: [VFx; €I 2 v/n}, J@®) = INI\J(2)
For either i € J(¢) ori € J(¥) , we show it decreases the loss function value

sufficiently

The local steps skip communication and introduce error, but the error can be
controlled when the # of local steps is not extremely large

Choose learning rate, clipping threshold, and # of local steps, we get linear

speedup (because we are using N machines) and reduced communication
rounds (due to the local steps)
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Technical Challenges and Solutions

- The analysis roadmap looks so easy, but there are certain challenges:
- Difficulty 1: The standard descent lemma in smooth case does not work

« Solution: We introduce a new descent lemma in relaxed smooth setting
and amenable to local steps

- If the learning rate is small, the loss function monotonically decreases
when synchronization occurs, even if the landscape is not smooth

 Local steps do not hurt too much

17



Technical Challenges and Solutions

- Difficulty 2: The stochastic gradient for the non-clipping client is
V F(x!; ENI(||F(x!; £)]| < a), which may not follow the right direction due
to the dependency between random variables

. Consider the following example (g: stochastic gradient):
« Pr(ig=2)=02,Pr(g=-2)=03,Pr(g=3)=05a=2
. E [g I g < a)] = — 0.2, but E [g] = 1.3, different directions'®

Solution: the distributional assumption (unimodal and symmetric noise)

- a new Lemma to show that the expectation of stochastic gradient in the
non-clipping client aligns with the true gradient up to a constant factor:

E [gl(llgll < @)] = Pr(ligll < @)AE[g], A = diag(cy, ...,c).0 < ;< 1 (22
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Experiments

 Train deep neural networks on 8 V100 GPUs

- Consider two tasks: language modeling and image classification

« Compare our algorithm with different I versus the naive parallel algorithm
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Gradient clipping with local steps does not hurt the convergence, instead accelerates the training!
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From i.i.d. Data to Non-i.i.d. Data

IID dataset Non-IID dataset
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Does Local Gradient Clipping Work for Heterogeneous Data?

xeR?

, 1 < 1 <
. The different client has different data distribution minf(0:=— > fi0) == ¥ E; o [F(x:&)]
i=1 i=1

« The Local Gradient Clipping Algorithm does not work:

. Consider the two clients case: f;(x) = EX2 +ax, fx) = Exz + ayXx

a=—y—1, aa=y+2, y>1, yistheclipping threshold
a, + a, |

. Optimal solution is xx = — - —
2 2

Start from O, run the local gradient clipping with learning rate 1 on each client

for 1iteration: the algorithm gets y and —y on two clients respectively, the
averaged model parameter becomes O again (the algorithm gets stuck!)

21



EPISODE (for Heterogeneous Data)

Algorithm 1: Episodic Gradient Clipping with Periodic Resampled Corrections (EPISODE)

1: Initialize z}) < xg, o < Xo.
2: forr=0,1,...,Rdo

3: foriE‘N‘do
end for

4
5
6 Update
7: for: € ) Periodic Resampled Correction
8: fort =1¢,,...,t,41 —1do _
9: Sample VF;(x; &;), where & ~ D;, and compute
. i i o g;
11: end for
12:  end for

. = 1N L
13:  Update T, < 5 > i1 Tt -
14: end for Data Heterogeneity




Proof Technique Overview

« New localization Lemma:

 In each communication round, the iterates of EPISODE stay in a
bounded region almost surely, where the function is locally L-smooth

- The radius of the bounded region does not depend on the data
heterogeneity (x), this is the key to show that the iteration complexity

does not depend on «

« Each communication rounds the function value will decrease
sufficiently

23
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Experiments

« Train a recurrent neural network on
SNLI dataset (text classification) on
eight GPUs

- Heterogeneous data: larger similarity
(s) indicates smaller heterogeneity

- EPISODE does not suffer from high
heterogeneity, while local gradient
clipping (CELGC) suffers from data
heterogeneity significantly
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From Full Client Participation to Partial
Client Participation

subsample devices
-7

subsample devices
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EPISODE++ Algorithm for Partial Client Participation

Algorithm 1 EPISODE++

1: Initialize &, Gz) — V.Fi(:io, Ez)a Gy + % Zivzl G%
2: forr=0,1,...,R—1do

3:  Sample S, C [N] uniformly at random such that |S,| = S
4: forz’ €S, do
5: Ty Tr
6: for k =0, . I—-1do '
7: Sample VF (@} 13 &.1.)» Where & ~ D;
8: g < VEi(} 438 0) — GL + Gy
9: T k41 Tk~ N9k L|G<v/m — VT k" LG, |2/
10: end for
11 Giii ¢ 1 k oVF () € k)
12: AG: + G, —GL
13:  end for

14:  Update &,41 £ Y ;cs, T g

15: Update G1"+1 — Gr + % Eiesr AG:.
16:  Denote G%_; + Giforalli ¢ S, [l
17: end for

Data Heterogeneity

Number of subsampled clients



Provable Advantage over Clipped Minibatch SGD

Baseline: Minibatch SGD (no local update, just local accumulation of
batch size with one update before communication)

It is proved by [Woodworth et al./20] that minibatch SGD is always better
than local SGD for heterogeneous data and full client participation

In federated learning, we only have partial client participation

We show that clipped minibatch SGD could be worse than EPISODE++ in
the presence of partial client participation and unbounded smoothness

27



Hardness Results of Clipped Minibatch SGD

Algorithm 2 Clipped Minibatch SGD

1: Initialize xg
2: forr=0,1,..., R—1do
Sample S, C [N] uniformly at random such that |S,.| = S

3.
I-1 i

4  gr= % Eiesr zk=o VFi(mT’ §r,k)

5:  Update ;1 < &, — min (77, H_.JTT) gr

6: end for

28



Proof Sketch of the Lower Bounds

- We analyze clipped minibatch SGD for three problem instances.

« For linear objective function with high heterogeneity: if the clipping
threshold is small (i.e., y/n < M), then the clipped minibatch SGD will never
converge with probability o

- For homogeneous exponential local objective, clipped minibatch SGD
cannot converge if the learning rate is not sufficiently small (i.e., 7 > 1/LM)

- For a large clipping threshold (i.e., y/n > M) and small learning rate (i.e.,
n < 1/LM), the convergence rate of clipped minibatch SGD will depend on

M for the third problem instance with homogeneous linear objectives

29



Experiments
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(a) Training loss and testing accuracy for SNLI dataset.
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Figure 1: Final training loss and testing accuracy for all algorithms, as participation ratio and data
similarity varies. (a) and (b) show results for SNLI and Sentiment140, respectively.
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An Adaptive Gradient Algorithm for
Layer-Wise Relaxed Smooth Functions



Layer-wise Relaxed Smoothness in Transformer
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Q: How to formally define layer-wise relaxed smoothness? Why people use Adam
for training Transformers? Can we take advantage of this assumption to design
better adaptive algorithms for training Transformers?
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(b) Encoder Last Layer
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(d) Decoder Last Layer

Relaxed smoothness parameters differ from layer to layer
[Crawshaw-L.-Orabona-Zhang-Zhuang, NeurlPS'22]
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Coordinate-wise Relaxed Smoothness
. Let Ly = [Ly, ...,Lo,d]T and L, :=[L, ...,Ll,d]T, A differentiable
function F(X) is (Ly, L;)-smooth coordinate-wisely, if for any X,y € R4

such that ||[x — y|| < , we have

1Ll

IA
+
L~

0F( ) OF( ) GF( )] 15, Vj € [d]
—(y) - —(x il=@ | [y = xll V;

- When L, ; = Lyand L, ; = L, for all j € [d], we recover the normal

version of this assumption
- Can we analyze modern coordinate-wise algorithms with this assumption?

- Do we need gradient clipping? i



Adam Algorithm (Coordinate-Wise Update)

Adam: A method for stochastic optimization [PDF] arxiv.org
DP Kingma, J Ba - arXiv preprint arXiv:1412.6980, 2014 - arxiv.org

... to first-order methods. We propose Adam, a method for efficient stochastic optimization that

only ... The method computes individual adaptive learning rates for different parameters from ...

Y¢ Save DY Cite Cited by 123807 Related articles All 25 versions 99

mo < 0 (Initialize 1%* moment vector)

vo < 0 (Initialize 2™ moment vector)

t < 0 (Initialize timestep)

while 6; not converged do
t<—t+1
9: < Vo fi(6:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my < B1-my_1 + (1 — B1) - g: (Update biased first moment estimate)
vy < B -vi_1 + (1 — B2) - g7 (Update biased second raw moment estimate)
my < my/(1 — B%) (Compute bias-corrected first moment estimate)
vy < v/ (1 — %) (Compute bias-corrected second raw moment estimate)
0; < 0;_1 — a - my/(v/0; + €) (Update parameters)

end while
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Gradient Clipping Might Be Implicit in Adam-type Algorithms
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- Adam optimizer with and without gradient clipping

. Train a 16-layer GPT-2 transformer model to do language modeling (word
level) in the Wikitext-103 dataset

« Minibatch size is 256, learning rate warmup and cosine annealing

- Adam has almost a bounded update and clipping seems not necessary
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A New Adam-type Algorithm (Generalized SignSGD)

Algorithm Generalized SignSGD
(All operations on vectors are element-wise)

1: Inputs: x4, 81, B2, 1

2:my=0,vg=0

3g: fort=1,---, Tdo

4:  Compute g,, an unbiased estimate of VF(x;)
5. my=pBim_q+ (1-51)g,

6:  Vi=[PaVi_1+ (1 — Bo)m?

7o Xt = Xt — 77%
8: end for

Difference with Adam: v; = Bov;_1 + (1 — 52)9?
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Theoretical Convergence Guarantee ()




Theoretical Convergence Guarantee (ll)




Transformer on Translation Task
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« Train a 6-layer Transformer on WMT"16 German-English Translation Task

- Mini-batch size is 256
« Learning rate warm-up and decay

- Training+testing with best hyperparameters repeated 5 times with
different random seeds
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Summary

Relaxed Smoothness condition in deep learning is widely-used

Communication-efficient federated learning algorithm for relaxed smooth
functions with homogeneous and heterogeneous data [L.-Zhuang-Lei-Liao,
NeurlPS'22, Crawshaw-Bao-L., ICLR'23]

New algorithms for partial client participation in federated learning for
relaxed smooth functions and lower bounds [Crawshaw-Bao-L., NeurlPS'23]

An Adam-type algorithm (generalized signSGD) for relaxed smooth functions
which is competitive to best-tuned Adam [Crawshaw-L.-Zhang-Orabona-
Zhuang, NeurlPS'22]
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