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• Acknowledgement: Some illustrations are from NeurIPS 2020 Federated 
Learning Tutorial:


• Peter Kairouz, Brendan Mcmahan, Virginia Smith. Federated Learning 
Tutorial (https://sites.google.com/view/fl-tutorial/)
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What is Federated Learning?
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Machine Learning on Edge Devices

• Billions of IoT devices generate data 


• Data enables better Machine Learning on edge devices
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GPT Models
• GPT (Generative Pre-trained Transformer)

An image generated with DALL-E 2 
based on the text prompt "Teddy 

bears working on new AI research 
underwater with 1990s technology"

My conversation with ChatGPT
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Can we deploy GPT models on Edge Device?

GPT models are huge GPT models might not be private
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Can we deploy GPT models on Edge Device?

GPT models are huge GPT models might not be private

Q: How to enable edge-device intelligence with privacy guarantees?
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Cross-device Federated Learning
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Application: Gboard next-word prediction
• Federated Recurrent Neural Network


• Better next-word prediction 
accuracy: +24%


• More useful prediction strip: +10% 
more clicks

A. Hard et al. "Federated learning for mobile keyboard prediction." arXiv preprint arXiv:1811.03604 (2018).
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Application: Apple Siri 
• “Instead, it relies primarily on a technique called 

federated learning, Apple’s head of privacy, Julien 
Freudiger, told an audience at the Neural 
Processing Information Systems conference on 
December 8. Federated learning is a privacy-
preserving machine-learning method that was 
first introduced by Google in 2017. It allows Apple 
to train different copies of a speaker recognition 
model across all its users’ devices, using only the 
audio data available locally. It then sends just the 
updated models back to a central server to be 
combined into a master model. In this way, raw 
audio of users’ Siri requests never leaves their 
iPhones and iPads, but the assistant continuously 
gets better at identifying the right speaker.”

https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/ 
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Formal Definition of Federated Learning
• Federated learning (FL) is a machine learning setting where many clients 

(e.g. mobile devices or whole organizations) collaboratively train a model 
under the orchestration of a central server (e.g. service provider), while 
keeping the training data decentralized. 

Efficiency

Privacy

P. Kairouz et al, 2021. Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2), pp.1-210.
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Cross-Silo Federated Learning

Small number of clients (e.g., organizations, data silos) 

participate the federated learning
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Federated Learning (FL) Terminology
• Clients: compute nodes holding local data


• IoT devices, mobile devices, data silos, data centers in different 
geographic regions

• Server: Additional compute nodes that coordinate the FL process without 
accessing the raw data
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How to design FL algorithms?
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Illustration of Federated Learning Algorithms
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Illustration of Federated Learning Algorithms
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Machine Learning as Risk Minimization

• : hypothesis class


• Loss function  measures the prediction error

ℱ

ℓ( ̂y, y)

f* = arg min
f∈ℱ

R( f ) := 𝔼x,y [ℓ( f(x), y)]
Risk of model f
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ℱ

ℓ( ̂y, y)

f* = arg min
f∈ℱ

R( f ) := 𝔼x,y [ℓ( f(x), y)]
Risk of model f

w* = arg min
w

𝔼x,y [ℓ( f(w; x), y)]

Prediction ̂y = f(w; x)
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Deep Neural Networks

x → fw(x) = wL ∘ σ (…σ (w2 ∘ σ(w1 ∘ x)))
min

w
𝔼x,y [ℓ( fw(x), y)]

Alexnet:
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The workhorse in Machine Learning
Stochastic Gradient Descent
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The workhorse in Machine Learning

• Stochastic Gradient Descent (SGD) [Robbins-Monro’51]


• Sample  uniformly


•

(xt, yt)

wt+1 = wt − ηt ∇ℓ(wt, xt, yt)

min
w

𝔼x,y [ℓ( fw(x), y)]
Stochastic Gradient Descent
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Federated Averaging (FedAvg) algorithm
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Dive Deep into FedAvg Algorithm

Stochastic Gradient Descent

Average the model parameter
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General Framework of FL Algorithm Design
• For t=1,…,T


• Sample a subset of clients and initialize the model from the server


• For each client in parallel, 


• Run a client optimization algorithm to update the model


• Compute the actual update on each client


• Average client updates on the server


• Run a server optimization algorithm 

ClientOpt (e.g., SGD)

SeverOpt (e.g., SGD) 
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• For t=1,…,T


• Sample a subset of clients and initialize the model from the server


• For each client in parallel, 


• Run a client optimization algorithm to update the model


• Compute the actual update on each client


• Average client updates on the server


• Run a server optimization algorithm 

ClientOpt (e.g., SGD)

SeverOpt (e.g., SGD) 

Algorithm design in FL boils down to designing ClientOpt and ServerOpt

29



Client Drift for Heterogeneous Data

Karimireddy et al. "Scaffold: Stochastic controlled averaging for federated learning." In International Conference on Machine Learning, pp. 5132-5143. PMLR, 2020.
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Client Drift for Heterogeneous Data

FedAvg suffers from client drift

Heterogeneous Data: different client has different data distribution

a different client optimization helps!

Karimireddy et al. "Scaffold: Stochastic controlled averaging for federated learning." In International Conference on Machine Learning, pp. 5132-5143. PMLR, 2020.
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Experiments 

Karimireddy et al. "Scaffold: Stochastic controlled averaging for federated learning." In International Conference on Machine Learning, pp. 5132-5143. PMLR, 2020.



Applications

32



Applications in Healthcare
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Applications in Financial Technology

Wu et al. Practical Vertical Federated Learning with Unsupervised Representation Learning. arXiv 2022.
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Applications in Transportation

Guo et al. Federated Learning Framework Coping with Hierarchical Heterogeneity in Cooperative ITS. arXiV 2022.
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Ongoing Research and Open 
Problems
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Ongoing FL Research in My Lab
• FL Algorithm Design for Natural Language Processing tasks


[L.-Zhuang-Lei-Liao, NeurIPS 22], [Crawshaw-Bao-L., ICLR 23]
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[L.-Zhuang-Lei-Liao, NeurIPS 22], [Crawshaw-Bao-L., ICLR 23]

• Train a recurrent neural network on SNLI dataset (text 
classification) on eight GPUs

• Heterogeneous data: larger similarity (s) indicates smaller 
heterogeneity 

• Our algorithm EPISODE does not suffer from high 
heterogeneity
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Improving Efficiency and Effectiveness
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Differential Private Federated Learning
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Q: Can we design algorithms with best utility-privacy tradeoff?



Thank you for your attention!
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