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1. Technical Lemmas

We introduce two concentration inequalities in Lemma 4,
which are used frequently in the proofs.

Lemma 4. e (Randomized version of Hoeffding’s in-
equality) Suppose T is a random variable taking value
on NT, and let X1,..., X1 be independent random
variables. Define X = %(Xl + ...+ X7). Ifevery
X, is strictly bounded by the intervals [a;, b;], then we
have with probability at least 1 — 6,

o w6 — a0
— < = .
Xr E(XT)_¢ e @)
Similarly, with probability at least 1 — 6,
oo In(1/0) 320 (b — a;)?
E(XT>—XTS\/“( R

e (Randomized version of vector concentration in-
equality) Suppose T is a random variable taking value
on Nt and let X1,..., Xy € R¢ be i.i.d. random
variables. If ¢ : R® — H, where H is a Hilbert
space endowed with norm || - || (actually we can take
H to be R? endowed with infinity norm). Suppose
B = supycga ||¢(x)|| < co. Then we have with prob-
ability at least 1 — §,
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Proof. The proof is quite straightforward. For the random-
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ized version of Hoeffding’s inequality, note that
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where the first inequality follows from the deterministic
version of Hoeffding’s inequality.

It is easy to show the correctness of the randomized
version of vector concentration inequality by employ-
ing the same technique. The deterministic version
can be derived via McDiarmid’s inequality (McDiarmid,
1989). A standard proof can be found in the sec-
tion 4.1 of (Shawe-Taylor & Cristianini, 2004). For
completeness, we include the proof here. To derive
the deterministic version, define S = (Xi,...,X7),
S1 = (X1,...,X]) to be two collections of indepen-
dent samples, So = (X1,...,X;-1, X}, Xiv1,..., X7),
— 12T, 6(X,) — E(6(X1))]. we have

) — f(S2)| < 2B/n. By McDiarmid’s inequality,
we have

Pr(f(81) ~ E(/(50) > o < o (-5 ) (10

Define 0 = (o1,...,0,) to be Rademacher variables, i.e.
Pr(o; = 1) = Pr(o; = —1) = 1/2, and o;’s are i.i.d.
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Define ¢, = 7 Z;il o(Z;), then
E(f(51)) = E(||¢s, — E(¢s,)|]) = E (llés, —E(sp)]l)
=E (H]E 9, = ¢sp)||) SE ([ — 95 ))

1
=E| =
(7
<2E<

Zo'i(d)(Xi) - o(X7)

> o)

)

=92F Z o (X +20i0j¢(Xz‘)¢(Xj)
i#j

<2 3 22(X. Xi)p(X

< 7\ [B | St + T owiolXo(X;)

2 S ewey < 2

- T\ i=1 T \/T

Combing this result with (10), and taking ¢ =
B,/ % log(%) suffice to get the result. O

2. Proof of Lemma 2

Proof. According to the equation (6) in (Ying et al., 2016),
we have

f(v.a) = fw,a,b,a) = p(1 —p>{

/ ((WTX —a)? —2(1+ a)wa) P(x|ly = 1)dz+

/x (w'x—b)? +2(1+a)w'x) P(xy = —1) — a2}

— (1= p){wT (BoxTly = 1)+ BT ly = 1) w

—2w! (aE(x|y = 1) + bE(x|y = —1)) + a® + b*

+2(1+a)w' (E(xly = —1) — E(x|y = 1)) — a2}

When a = w' (E(x|y = —1) — E(x|y = 1)) € Qo, (itis
easy to see that & € {22 by employing Cauchy-Schwarz
inequality, i.e. |o| < |wl; - |[E(x|ly = —1) — E(x|y =
Dlloo < 2RK), f(v, ) achieves its maximum with respect

to o, S0 we get

%) = f (w,a,5,w T (E(xly = 1) — E(xly = 1)
= (1 = )Ty = Dw — 20w By = 1) +
+w E(xx'|y=—-1)w — 2bw ' E(x|y = —1
~E(xly = -1)))’
2w (Bl = —1) ~ Elxly = 1)

=p(1-p)[(w,a.b)"
where M = M1 + M2 + M3,

)+ b?
+[(w' (B(xly=1)

E(xx'ly=1) —-E(x|ly=1) 0
My =|-Exy=1) 1 0
0 0 0
E(xx"|y=-1) 0 —E(x|y=-1)
M,y = 0 0 0
-Exjly=-1) 0 1
qq" 0 0
Msy=1| 0 0 0
0 00
q = E(x|y = 1) — E(x|y = —1). Note that M, Ms, M3

are positive semidefinite matrices, and hence M is positive
semidefinite. So f1(v) is convex and piecewise quadratic.
Since 21 is a polyhedron, according to Corollary 3.1 of (Li,
2013), we can know that f; (v) restricted on €2; satisfies the
quadratic growth condition.

O

3. Proof of Lemma 3

Proof. By applying the inequality (9) in Lemma 4, the tri-
angle inequality, and the union bound, we have with prob-
ability at least 1 — %,

|A— Az <
\j% ( 21n(152)> + \j:% ( 21n(162)> ,

Y

Note that both 7" and T follow the Bernoulli distribution,
and denote p = Pr(y = 1). By applying deterministic ver-
sion of Hoeffding’s inequality in Lemma 4 (i.e., inequal-
ity 8) to indicator functions of random variables I}, —_
and I, ) respectively and the union bound, we have with
probability at least 1 —
simultaneously:

%, the following two equations hold

In()T In(2)T

T_->(1-pT- 9 , Ty > pT —

- M - (w,a,b) + affine function of v| ,
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According to (11) and (12), by union bound, we know that
with probability at least 1 — g, we have

14— Ally

2/-;(2+ 21n(%)) 2n<2+ 21n(%))

In(1)T In()T
JO—MT—V s \ﬁT—w &2

<

(13)
Note that (12) is equivalent to
Tln(42
pT > prT — | L5,
(14)
T1n(42
(=T > (-7 — | T2

Utilizing (14) and plugging it into (13), we know that with
probability at least 1 — 2,

2K (2+ 2111(%))
\/(1pT

2 (2+4/21n(2))

\/p T_ \/Tln(12) \/Tlnz(%

1A= Allz <

) 25(2+ 21n(%)> N 25(2+ 21n(%))
\/(1—13T)T— TIn('7) \/ﬁTT— 2T In(42)
a5 (24 /2m(12))

< b

- VET

where

21n(12
& =min(pr,1 —pr) — nj{é )
O

4. Proof of Theorem 1

Proof. Define § = 1o§jn’ and a(n,d) = G(QV\/:%71 +
\/In (82 _ = .
727\/5(")) . o = 2Ry ta(no,d), pr = 2%po, Ry =
Ro/2%, where k = 1,...,m. Then we have u;R? =
2_k,u0Rg.
By definition of m, when n > 100,
1 2n 1 1
0< 1 =1 -1< =1 ,
9 082 logon = T 2 02 logon — — 82

(15)

so we have
1 2
"> i (16)
logyn’
To employ the result of Lemma 2, at the i-th stage, we need
R2
to satisfy 7' > £ R2 = 42+141H%g = 4%/(2 + 4x2), which should

hold for any 1 g i < m. Song > 4™ suffices to achieve
this requirement. Now we argue that this condition can be
implied by n > 100. Note that

m 1 log, =21
and 4™ < 42 logy n = m To show the impli-
cation from n > 100 to ny > 4™, it suffices to prove
that when n > 100, llog2 -1 < %log2 n, i.e.,

logyn
2n
Togy n

%27 < n, which obviously holds.

According to Lemma 2, we know that P(v) = fi(v) sat-
isfies the quadratic growth condition, which implies that
there exists some ¢ > 0, such that ||v — v*||s < ¢(P(v) —
P(v*))z, where v* is the closest point to v in €2,.

We can assume ¢2 > & ,l.e., i <z Q Otherwise we can

set ¢ to be 2 such that the quadratlc growth property in
Lemma 2 st111 holds.

When n > 100, we have

pom = 2" 1o
L2 pag 2371 y2y/In (6ng/9)
> 0 +
logy Vo Vo
e 1 Q\f In (3n log, n)
~ Ry log2 n \/770 N
G g2 1)

\ \/

2\[ 2¢/In( 3n0 lo
Ry 1og2 n
G 2[ \/ 3 (3logy m)
Ry log2 n
G 2n \f) In(3logy n)
R() 1Og2 n ﬁ +1

Togg n

G | (2v/3)2y/In(31og, n) S G
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| \/
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where the first inequality holds because of (16), the second
inequality stems from the fact that vy > 1, 72 > 2,
0 < § < 1, and the definition of &, the third inequality
holds by employing a + b > 2v/ab, the fourth inequality
holds because 1 < ng < % + 1, the fifth inequality
holds because of the lower bound of m in (15), and the
last inequality holds since n > 100 and the function is
monotonically increasing with respect to n. So 1% < L.

Recall that &, < R%, and thus & < fiy,.

Given Vi, denote V; by the closest optimal solution to V.
We consider two cases.

Case 1. If -5 > o, then pg < = < gy So there exists
a k* such that s < & < 240, where 0 < k* <m. To
utilize this fact, we have the following lemma.

Lemma 5. Let k* satisfy j < — < 2us+. Then for any
1 < k < k*, there exists a Borel set Aj, C ) of probability
at least 1 — k6, such that for w € Ay, the points {V;} 7",
generated by the Algorithm 1 satisfy

[Vk_1 —Vi_qlla < Rp_1 = 271 Ry,

P(¥1) — P < unR2 = 27 %o R2.

a7)
(18)

Moreover, for k > k* there is a Borel set Cy, C €2 of prob-
ability at least 1 — (k — k*)o such that on Cy, we have

P(V1) — P(Vi+) < e Rj. (19)
Proof. We prove (17) and (18) by induction. Note that (17)
holds for £ = 1. Assume it is true for some £ > 1 on A;_1.
According to tlle Lemma 1, there exists a Borel set 35, with
Pr(Bk) > 1 — § such that

~ < 1 _
P(Vi) — P, < Rg_1a(ng,0) = §Mk2 RoRy_1 = uiR3,
which is (18). By the inductive hypothesis, ||[Vi—1 —
Vi_1ll2 < Ri—1 onthe set Ay_q. Define Ay, = Ap_1NBs.
Note that

Pr(Az) > Pr(Ag_1) +Pr(B) —1>1— kS,

and on Ay, by the quadratic growth condition and the defi-
nition of k*, we have

Vi = Vill3 < F(P(Vk) — P.)
S _ 2
< POWZ Pl
Hiex Fokox

which is (17) for k£ + 1.

Now we prove (19). For k > k¥, it is easy to show a
similar conclusion as in Lemma 1 (Remark: At k-th stage
with £ > k*, one can use the similar proof of Lemma

1 by substituting all v, to Vj_1, the first term (I) on
the RHS becomes zero and hence we can get a tighter
bound of P(Vy) — P(Vi_1), we here relax the bound to be
Ry_1a(ng,d)), which is, there exists a Borel set B, with
Pr(B;) > 1 — 6 such that

P(Gk) — P(Ok_l) S Rk_la(no, 8)
= 2k**kRk*_1a(n0,5) = Zk*fkuk*Ri* = upR3,

which implies that on C, = ﬁj _j-41Bj, we have

M=

P(Vy) = P(Vy-) = (P(v;) — P(Vj-1))
=k 1
k
< Z Qk*ijuk*Ri* SN/@*R%*-
j=k*+1

By union bound, we have Pr(Cy) = Pr(n* g Bi) = 1—
(k — k*)d. Here completes the proof. O

Now we proceed the proof as follows. Note that pig < -5 <
Hm- At the end of £*-th stage, on the Borel set Ak* of
probability at least 1 — k*3, we have

P(Ep) — P, < pup-R2..

Then on the Borel set D,,, = Cp, N Ap» = (ﬁ;‘”:k*—i-lBj) N
Ay with Pr(D,,,) > 1 — mé, we have

P(Vy) — P = P(Vy,) — P(Vi+) + (P(Vir) — P)
< o B2, < 4(’% Y R2.
= (4c - a(no, 5))2.

By the definition of_ m and 8, and the fact that m <
%logQ n, we have mo < 6. So Pr(D,,,) > 1 — 4.

Case2. If C% < g, thenon A; = By,
— Ro 2
P(¥v1) — P, < Ro - a(ng,9) = = - a(nop,0)
GJ(TL(), )
= —a(no,8)* < 2(c-a(no,d))

Hence on A; N C,y,, by using Lemma 5 and a similar argu-
ment as in case 1, we have

P(vi) — P

P(¥) — P. =P(¥) - P(¥1) +
5) < (2¢-alno.5))?,

<2Ry - a(no,
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where Pr(4; NC,,) > 1— 4. Combining the two cases, we
have with probability at least 1 — 9,

P(m) — P,

6n9 log, n
23y 2y In ()
< (evoer [ o | B2 20

Vo Vi
_0 (1“7(1%)).
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