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1. Technical Lemmas
We introduce two concentration inequalities in Lemma 4,
which are used frequently in the proofs.

Lemma 4. • (Randomized version of Hoeffding’s in-
equality) Suppose T is a random variable taking value
on N+, and let X1, . . . , XT be independent random
variables. Define X̄T = 1

T (X1 + . . .+XT ). If every
Xi is strictly bounded by the intervals [ai, bi], then we
have with probability at least 1− δ,

X̄T − E(X̄T ) ≤

√
ln(1/δ)

∑T
i=1(bi − ai)2

2T 2
. (7)

Similarly, with probability at least 1− δ,

E(X̄T )− X̄T ≤

√
ln(1/δ)

∑T
i=1(bi − ai)2

2T 2
(8)

• (Randomized version of vector concentration in-
equality) Suppose T is a random variable taking value
on N+, and let X1, . . . , XT ∈ Rd be i.i.d. random
variables. If φ : Rd → H, where H is a Hilbert
space endowed with norm ‖ · ‖ (actually we can take
H to be Rd endowed with infinity norm). Suppose
B = supx∈Rd ‖φ(x)‖ <∞. Then we have with prob-
ability at least 1− δ,∥∥∥∥∥ 1

T

T∑
i=1

φ(Xi)− E (φ(X1))

∥∥∥∥∥ ≤ B√
n

[
2 +

√
2 log(1/δ)

]
.

(9)

Proof. The proof is quite straightforward. For the random-
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ized version of Hoeffding’s inequality, note that

Pr

 1

T
(X1 + . . .+XT )− E(X1) ≥

√
ln(1/δ)

∑T
i=1(bi − ai)2

2T 2


=

∞∑
t=1

Pr

X̄T − E(X̄T ) ≥

√
ln(1/δ)

∑T
i=1(bi − ai)2

2T 2

∣∣∣∣T = t


· Pr (T = t)

≤
∞∑
t=1

δ · Pr(T = t) = δ,

where the first inequality follows from the deterministic
version of Hoeffding’s inequality.

It is easy to show the correctness of the randomized
version of vector concentration inequality by employ-
ing the same technique. The deterministic version
can be derived via McDiarmid’s inequality (McDiarmid,
1989). A standard proof can be found in the sec-
tion 4.1 of (Shawe-Taylor & Cristianini, 2004). For
completeness, we include the proof here. To derive
the deterministic version, define S1 = (X1, . . . , XT ),
S′1 = (X ′1, . . . , X

′
n) to be two collections of indepen-

dent samples, S2 = (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , XT ),

and f(S) = ‖ 1
T

∑T
i=1 φ(Xi) − E(φ(X1))‖, we have

|f(S1) − f(S2)| ≤ 2B/n. By McDiarmid’s inequality,
we have

Pr (f(S1)− E(f(S1)) > ε) ≤ exp

(
−2Tε2

4B2

)
(10)

Define σ = (σ1, . . . , σn) to be Rademacher variables, i.e.
Pr(σi = 1) = Pr(σi = −1) = 1/2, and σi’s are i.i.d.
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Define φ̄S1
= 1

T

∑T
i=1 φ(Zi), then

E (f(S1)) = E
(∥∥φ̄S1

− E(φS1
)
∥∥) = E

(
‖φ̄S1

− E(φS′1)‖
)

= E
(∥∥E(φ̄S1

− φS′1)
∥∥) ≤ E

(∥∥φS1
− φS′1

∥∥)
= E

(
1

T

∥∥∥∥∥
T∑
i=1

σi(φ(Xi)− φ(X ′i))

∥∥∥∥∥
)

≤ 2E

(
1

T

∥∥∥∥∥
T∑
i=1

σiφ(Xi)

∥∥∥∥∥
)

= 2E

 1

T

√√√√ T∑
i=1

σ2
i φ

2(Xi) +
∑
i 6=j

σiσjφ(Xi)φ(Xj)


≤ 2

T

√√√√√E

 T∑
i=1

σ2
i φ

2(Xi) +
∑
i 6=j

σiσjφ(Xi)φ(Xj)


=

2

T

√√√√ T∑
i=1

E(φ2(Xi)) ≤
2B√
T
.

Combing this result with (10), and taking ε =

B
√

2
T log( 1

δ ) suffice to get the result.

2. Proof of Lemma 2
Proof. According to the equation (6) in (Ying et al., 2016),
we have

f(v, α) = f(w, a, b, α) = p(1− p)
{

∫
x

(
(w>x− a)2 − 2(1 + α)w>x

)
P (x|y = 1)dx+∫

x

(
(w>x− b)2 + 2(1 + α)w>x

)
P (x|y = −1)− α2

}
= p(1− p)

{
w>

(
E(xx>|y = 1) + E(xx>|y = −1)

)
w

− 2w> (aE(x|y = 1) + bE(x|y = −1)) + a2 + b2

+ 2(1 + α)w> (E(x|y = −1)− E(x|y = 1))− α2

}

When α = w> (E(x|y = −1)− E(x|y = 1)) ∈ Ω2, (it is
easy to see that α ∈ Ω2 by employing Cauchy-Schwarz
inequality, i.e. |α| ≤ ‖w‖1 · ‖E(x|y = −1) − E(x|y =
1)‖∞ ≤ 2Rκ), f(v, α) achieves its maximum with respect

to α, so we get

f1(v) = f
(
w, a, b,w> (E(x|y = −1)− E(x|y = 1))

)
= p(1− p)

{
w>E(xx>|y = 1)w − 2aw>E(x|y = 1) + a2

+ w>E(xx>|y = −1)w − 2bw>E(x|y = −1) + b2

+ [
(
w> (E(x|y = 1)− E(x|y = −1))

)2
+ 2w>(E(x|y = −1)− E(x|y = 1))]

}
= p(1− p)

[
(w, a, b)> ·M · (w, a, b) + affine function of v

]
,

where M = M1 +M2 +M3,

M1 =

E(xx>|y = 1) −E(x|y = 1) 0
−E(x|y = 1) 1 0

0 0 0


M2 =

E(xx>|y = −1) 0 −E(x|y = −1)
0 0 0

−E(x|y = −1) 0 1


M3 =

qq> 0 0
0 0 0
0 0 0


q = E(x|y = 1) − E(x|y = −1). Note that M1,M2,M3

are positive semidefinite matrices, and hence M is positive
semidefinite. So f1(v) is convex and piecewise quadratic.
Since Ω1 is a polyhedron, according to Corollary 3.1 of (Li,
2013), we can know that f1(v) restricted on Ω1 satisfies the
quadratic growth condition.

3. Proof of Lemma 3
Proof. By applying the inequality (9) in Lemma 4, the tri-
angle inequality, and the union bound, we have with prob-
ability at least 1− δ

6 ,

‖Â−A‖2 ≤

2κ√
T−

(
2 +

√
2 ln(

12

δ
)

)
+

2κ√
T+

(
2 +

√
2 ln(

12

δ
)

)
,

(11)

Note that both T− and T+ follow the Bernoulli distribution,
and denote p = Pr(y = 1). By applying deterministic ver-
sion of Hoeffding’s inequality in Lemma 4 (i.e., inequal-
ity 8) to indicator functions of random variables I[yi=−1]
and I[yi=1] respectively and the union bound, we have with
probability at least 1− δ

6 , the following two equations hold
simultaneously:

T− ≥ (1− p)T −

√
ln( 12

δ )T

2
, T+ ≥ pT −

√
ln( 12

δ )T

2
.

(12)
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According to (11) and (12), by union bound, we know that
with probability at least 1− δ

3 , we have

‖Â−A‖2

≤
2κ
(

2 +
√

2 ln( 12
δ )
)

√
(1− p)T −

√
ln( 12

δ )T

2

+
2κ
(

2 +
√

2 ln(12
δ )
)

√
pT −

√
ln( 12

δ )T

2

.

(13)
Note that (12) is equivalent to

pT ≥ p̂TT −

√
T ln( 12

δ )

2
,

(1− p)T ≥ (1− p̂T )T −

√
T ln( 12

δ )

2
.

(14)

Utilizing (14) and plugging it into (13), we know that with
probability at least 1− δ

3 ,

‖Â−A‖2 ≤
2κ
(

2 +
√

2 ln( 12
δ )
)

√
(1− p̂T )T −

√
T ln( 12

δ )

2 −
√

T ln( 12
δ )

2

+
2κ
(

2 +
√

2 ln( 12
δ )
)

√
p̂TT −

√
T ln( 12

δ )

2 −
√

T ln( 12
δ )

2

=
2κ
(

2 +
√

2 ln( 12
δ )
)

√
(1− p̂T )T −

√
2T ln( 12

δ )

+
2κ
(

2 +
√

2 ln( 12
δ )
)

√
p̂TT −

√
2T ln( 12

δ )

≤
4κ
(

2 +
√

2 ln( 12
δ )
)

√
ξT

,

where

ξ ≡ min(p̂T , 1− p̂T )−

√
2 ln( 12

δ )

T
.

4. Proof of Theorem 1
Proof. Define δ̄ = 2δ

log2 n
, and a(n, δ̄) = G( 2

√
3γ1√
n

+

γ2

√
ln ( 6n

δ̄
)

√
n

) , µ0 = 2R−10 a(n0, δ̄), µk = 2kµ0, Rk =

R0/2
k, where k = 1, . . . ,m. Then we have µkR2

k =
2−kµ0R

2
0.

By definition of m, when n ≥ 100,

0 <
1

2
log2

2n

log2 n
−2 ≤ m ≤ 1

2
log2

2n

log2 n
−1 ≤ 1

2
log2 n,

(15)

so we have

2m ≥ 1

4

√
2n

log2 n
. (16)

To employ the result of Lemma 2, at the i-th stage, we need

to satisfy T ≥ R2

R2
i

=
R2

0
2+4κ2

4−iR2
0

= 4i/(2 + 4κ2), which should
hold for any 1 ≤ i ≤ m. So n0 ≥ 4m suffices to achieve
this requirement. Now we argue that this condition can be
implied by n ≥ 100. Note that

n0 = bn/mc ≥ n

m
− 1 ≥ n

1
2 log2

2n
log2 n

− 1
− 1

≥ n

(
1

1
2 log2

2n
log2 n

− 1
− 1

n

)

≥ n

(
1

1
2 log2

2n
log2 n

− 1
− 1

log2 n

)
,

and 4m ≤ 4
1
2 log2

2n
log2 n

−1 = n
2 log2 n

. To show the impli-
cation from n ≥ 100 to n0 ≥ 4m, it suffices to prove
that when n ≥ 100, 1

2 log2
2n

log2 n
− 1 ≤ 2

3 log2 n, i.e.,√
2n

log2 n

2 ≤ n 2
3 , which obviously holds.

According to Lemma 2, we know that P (v) ≡ f1(v) sat-
isfies the quadratic growth condition, which implies that
there exists some c > 0, such that ‖v − v∗‖2 ≤ c(P (v)−
P (v∗))

1
2 , where v∗ is the closest point to v in Ω∗.

We can assume c2 ≥ R0

G , i.e., 1
c2 ≤

G
R0

. Otherwise we can
set c2 to be R0

G such that the quadratic growth property in
Lemma 2 still holds.

When n ≥ 100, we have

µm = 2mµ0

≥ 1

4

√
2n

log2 n
2R−10 G

(
2
√

3γ1√
n0

+
γ2
√

ln (6n0/δ̄)√
n0

)

≥ G

R0
· 1

2

√
2n

log2 n

(
2
√

3
√
n0

+
2
√

ln (3n0 log2 n)
√
n0

)

≥ G

R0

√
2n

log2 n

√
(2
√

3)2
√

ln(3n0 log2 n)

n0

≥ G

R0
·

√
2n

log2 n

√
(2
√

3)2
√

ln(3 log2 n)
n
m + 1

≥ G

R0
·

√
2n

log2 n

√√√√ (2
√

3)2
√

ln(3 log2 n)
n

1
2 log2

2n
log2 n

−2 + 1

=
G

R0

√√√√√ (2
√

3)2
√

ln(3 log2 n)
1

1− log2 log2 n+3
log2 n

+ log2 n
2n

≥ G

R0
.
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where the first inequality holds because of (16), the second
inequality stems from the fact that γ1 ≥ 1, γ2 ≥ 2,
0 < δ < 1, and the definition of δ̄, the third inequality
holds by employing a + b ≥ 2

√
ab, the fourth inequality

holds because 1 ≤ n0 ≤ n
m + 1, the fifth inequality

holds because of the lower bound of m in (15), and the
last inequality holds since n ≥ 100 and the function is
monotonically increasing with respect to n. So G

R0
≤ µm.

Recall that 1
c2 ≤

G
R0

, and thus 1
c2 ≤ µm.

Given v̂k, denote v̂∗k by the closest optimal solution to v̂k.
We consider two cases.

Case 1. If 1
c2 ≥ µ0, then µ0 ≤ 1

c2 ≤ µm. So there exists
a k∗ such that µk∗ ≤ 1

c2 ≤ 2µk∗ , where 0 ≤ k∗ < m. To
utilize this fact, we have the following lemma.

Lemma 5. Let k∗ satisfy µk∗ ≤ 1
c2 ≤ 2µk∗ . Then for any

1 ≤ k ≤ k∗, there exists a Borel set Ak ⊂ Ω of probability
at least 1 − kδ̄, such that for ω ∈ Ak, the points {v̂k}mk=1

generated by the Algorithm 1 satisfy

‖v̂k−1 − v̂∗k−1‖2 ≤ Rk−1 = 2−k+1R0, (17)

P (v̂k)− P∗ ≤ µkR2
k = 2−kµ0R

2
0. (18)

Moreover, for k > k∗ there is a Borel set Ck ⊂ Ω of prob-
ability at least 1− (k − k∗)δ̄ such that on Ck, we have

P (v̂k)− P (v̂k∗) ≤ µk∗R2
k∗ . (19)

Proof. We prove (17) and (18) by induction. Note that (17)
holds for k = 1. Assume it is true for some k > 1 onAk−1.
According to the Lemma 1, there exists a Borel set Bk with
Pr(Bk) ≥ 1− δ̄ such that

P (v̂k)− P∗ ≤ Rk−1a(n0, δ̄) =
1

2
µk2−kR0Rk−1 = µkR

2
k,

which is (18). By the inductive hypothesis, ‖v̂k−1 −
v̂∗k−1‖2 ≤ Rk−1 on the setAk−1. DefineAk = Ak−1∩Bk.
Note that

Pr(Ak) ≥ Pr(Ak−1) + Pr(Bk)− 1 ≥ 1− kδ̄,

and on Ak, by the quadratic growth condition and the defi-
nition of k∗, we have

‖v̂k − v̂∗k‖22 ≤ c2(P (v̂k)− P∗)

≤ P (v̂k)− P∗
µk∗

≤ µkR
2
k

µk∗
≤ R2

k,

which is (17) for k + 1.

Now we prove (19). For k > k∗, it is easy to show a
similar conclusion as in Lemma 1 (Remark: At k-th stage
with k > k∗, one can use the similar proof of Lemma

1 by substituting all v∗ to v̂k−1, the first term (I) on
the RHS becomes zero and hence we can get a tighter
bound of P (v̂k)−P (v̂k−1), we here relax the bound to be
Rk−1a(n0, δ̄)), which is, there exists a Borel set Bk with
Pr(Bk) ≥ 1− δ̄ such that

P (v̂k)− P (v̂k−1) ≤ Rk−1a(n0, δ̄)

= 2k
∗−kRk∗−1a(n0, δ̄) = 2k

∗−kµk∗R
2
k∗ = µkR

2
k,

which implies that on Ck = ∩kj=k∗+1Bj , we have

P (v̂k)− P (v̂k∗) =

k∑
j=k∗+1

(P (v̂j)− P (v̂j−1))

≤
k∑

j=k∗+1

2k
∗−jµk∗R

2
k∗ ≤ µk∗R2

k∗ .

By union bound, we have Pr(Ck) = Pr(∩kj=k∗+1Bj) ≥ 1−
(k − k∗)δ̄. Here completes the proof.

Now we proceed the proof as follows. Note that µ0 ≤ 1
c2 ≤

µm. At the end of k∗-th stage, on the Borel set Ak∗ of
probability at least 1− k∗δ̄, we have

P (v̂k∗)− P∗ ≤ µk∗R2
k∗ .

Then on the Borel set Dm = Cm ∩ Ak∗ = (∩mj=k∗+1Bj) ∩
Ak∗ with Pr(Dm) ≥ 1−mδ̄, we have

P (v̂m)− P∗ = P (v̂m)− P (v̂k∗) + (P (v̂k∗)− P∗)

≤ 2µk∗R
2
k∗ ≤ 4(

µk∗

c−2
)µk∗R

2
k∗

= (4c · a(n0, δ̄))
2.

By the definition of m and δ̄, and the fact that m ≤
1
2 log2 n, we have mδ̄ ≤ δ. So Pr(Dm) ≥ 1− δ.

Case 2. If 1
c2 < µ0, then on A1 = B1,

P (v̂1)− P∗ ≤ R0 · a(n0, δ̄) =
R0

a(n0, δ̄)
· a(n0, δ̄)

2

=
2

µ0
a(n0, δ̄)

2 ≤ 2
(
c · a(n0, δ̄)

)2
.

Hence on A1 ∩ Cm, by using Lemma 5 and a similar argu-
ment as in case 1, we have

P (v̂m)− P∗ =P (v̂m)− P (v̂1) + P (v̂1)− P∗
≤2R0 · a(n0, δ̄) ≤ (2c · a(n0, δ̄))

2,
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where Pr(A1 ∩Cm) ≥ 1− δ. Combining the two cases, we
have with probability at least 1− δ,

P (v̂m)− P∗

≤ (4c ∨ 2c)2

G
2
√

3γ1√
n0

+
γ2

√
ln (6n0 log2 n

2δ )
√
n0

2

= Õ

(
ln( 1

δ )

n

)
.

References
Li, G. Global error bounds for piecewise convex polyno-

mials. Mathematical Programming, pp. 1–28, 2013.

McDiarmid, C. On the method of bounded differences.
Surveys in combinatorics, 141(1):148–188, 1989.

Shawe-Taylor, J. and Cristianini, N. Kernel methods for
pattern analysis. Cambridge university press, 2004.

Ying, Y., Wen, L., and Lyu, S. Stochastic online auc maxi-
mization. In Advances in Neural Information Processing
Systems, pp. 451–459, 2016.


