Mingrui Liu[†], Xiaoxuan Zhang[†], Lijun Zhang[‡], Rong Jin[‡], Tianbao Yang[†] [†]Department of Computer Science, The University of Iowa [‡]Nanjing University, Nanjing, China [‡]Alibaba Group, Bellevue, WA 98004

Background and Main Contributions

Background: Error bound conditions (EBC) have recently received increasing attention in the field of optimization for developing faster convergence.

Contributions: Studied EBC in statistical learning setting.

- . Developed fast and optimistic rates of empirical risk minimization (ERM) under EBC for risk minimization with Lipschitz continuous, smooth convex random functions.
- 2. Established fast rates of efficient stochastic approximation (SA) algorithm for risk minimization with Lipschitz continuous random functions, which requires only one pass of *n* samples and adapts to EBC.

Problem of Interest

. Consider the **Risk Minimization** Problem:

 $\min_{\mathbf{w}\in\mathcal{W}} P(\mathbf{w}) \triangleq \mathbb{E}_{\mathbf{z}\sim\mathbb{P}}[f(\mathbf{w},\mathbf{z})]$

and more generally

 $\min_{\mathbf{w}\in\mathcal{W}} P(\mathbf{w}) \triangleq \mathbb{E}_{\mathbf{z}\sim\mathbb{P}}[f(\mathbf{w},\mathbf{z})] + r(\mathbf{w})$

where $f(\cdot, \mathbf{z}) : \mathcal{W} \to \mathbb{R}$ is a random function depending on a random variable $z \in Z$ that follows a distribution \mathbb{P} , r(w) is a lower semi-continuous convex function. $\mathcal{W} \subset \mathbb{R}^d$ is a convex and compact set (i.e., $\|\mathbf{w}\|_2 \leq R$ for all $\mathbf{w} \in \mathcal{W}$), $\mathcal{W}_* = \arg\min_{\mathbf{w}\in\mathcal{W}} P(\mathbf{w})$ denotes the optimal set and $P_* = \min_{\mathbf{w}\in\mathcal{W}} P(\mathbf{w})$ denotes the optimal risk.

2. $P(\mathbf{w})$ satisfies the error bound condition $EBC(\theta, \alpha)$, i.e., for $\forall \mathbf{w} \in \mathcal{W}$, $\|\mathbf{w} - \mathbf{w}^*\|_2^2 \le \alpha (P(\mathbf{w}) - P(\mathbf{w}^*))^{\theta},$

where $\mathbf{w}^* = \arg \min_{\mathbf{u} \in \mathcal{W}_*} \|\mathbf{u} - \mathbf{w}\|_2$ denote an optimal solution closest to $\mathbf{w}, \mathcal{W}_*$ is the set containing all optimal solutions, $\theta \in (0, 1]$ and $0 < \alpha < \infty$.

Other Conditions and Relationships to EBC

(Bernstein Condition) Let $\beta \in (0,1]$ and $B \ge 1$. Then $(f, \mathbb{P}, \mathcal{W})$ satisfies the (β, B) -Bernstein condition if there exists a $\mathbf{w}_* \in \mathcal{W}$ such that for any $\mathbf{w} \in \mathcal{W}$

 $\mathbb{E}_{\mathbf{z}}[(f(\mathbf{w},\mathbf{z}) - f(\mathbf{w}_{*},\mathbf{z}))^{2}] \leq B(\mathbb{E}_{\mathbf{z}}[f(\mathbf{w},\mathbf{z}) - f(\mathbf{w}_{*},\mathbf{z})])^{\beta}.$ (*v*-Central Condition) Let $v : [0, \infty) \rightarrow [0, \infty)$ be a bounded, non-decreasing function satisfying v(x) > 0 for all x > 0. We say that $(f, \mathbb{P}, \mathcal{W})$ satisfies the *v*-central condition if for all $\varepsilon \ge 0$, there exists $\mathbf{w}_* \in \mathcal{W}$ such that for any $\mathbf{w} \in \mathcal{W}$ the following holds with $\eta = v(\varepsilon)$.

 $\mathbb{E}_{\mathbf{z}\sim\mathbb{P}}\left[e^{\eta(f(\mathbf{w}_{*},\mathbf{z})-f(\mathbf{w},\mathbf{z}))}\right] \leq e^{\eta\varepsilon}.$

EBC implies relaxed Berstein and v-central condition. Assume f(w, z) is a G-Lipschitz continuous function w.r.t w for any $z \in \mathcal{Z}$. For any $w \in \mathcal{W}$, there exists $\mathbf{w}^* \in \mathcal{W}_*$ (which is actually the one closest to \mathbf{w}), such that $\mathbb{E}_{\mathbf{z}}[(f(\mathbf{w},\mathbf{z}) - f(\mathbf{w}^*,\mathbf{z}))^2] \le B(\mathbb{E}_{\mathbf{z}}[f(\mathbf{w},\mathbf{z}) - f(\mathbf{w}^*,\mathbf{z})])^{\theta},$ where $B = G^2 \alpha$, and $\mathbb{E}_{\mathbf{z} \sim \mathbb{P}} \left[e^{\eta(f(\mathbf{w}^*, \mathbf{z}) - f(\mathbf{w}, \mathbf{z}))} \right] \leq e^{\eta \varepsilon}$, where $\eta = v(\varepsilon) :=$ $c\varepsilon^{1-\theta} \wedge b$. Additionally, for any $\varepsilon > 0$ if $P(\mathbf{w}) - P(\mathbf{w}^*) \geq \varepsilon$, we have $\mathbb{E}_{\mathbf{z}\sim\mathbb{P}}\left[e^{v(\varepsilon)(f(\mathbf{w}^*,\mathbf{z})-f(\mathbf{w},\mathbf{z}))}\right] \leq 1$, where b > 0 is any constant and c = $1/(\alpha G^2\kappa(4GRb))$, where $\kappa(x) = (e^x - x - 1)/x^2$.

Remark: EBC does not require the existence of universal w^{*}, which is required by original Bernstein and v-central condition.

Fast Rates of ERM and Stochastic Approximation: Adaptive to Error Bound Conditions

Empirical Risk Minimization

(1)

(2)

(3)

(4)

(5)

Without loss of generality, we restrict our attention to (1) if $r(\mathbf{w})$ is a Lipschitz continuous convex function.

ERM for Lipschitz continuous random functions Assume $f(\mathbf{w}, \mathbf{z})$ is a G-Lipschitz continuous function w.r.t w for any $\mathbf{z} \in \mathcal{Z}$. If $r(\mathbf{w})$ is present, it can be absorbed into $f(\mathbf{w}, \mathbf{z})$. It is notable that we do not assume $f(\mathbf{w}, \mathbf{z})$ is convex in terms of w or any z.

ERM for *G***-Lipsc** probability at least

hitz continuous random functions. For any
$$n \ge aC$$
, with
 $1 - \delta$ we have
 $P(\widehat{\mathbf{w}}) - P_* \le O\left(\frac{d\log n + \log(1/\delta)}{n}\right)^{\frac{1}{2-\theta}},$ (6)
 $32GRn^{1/(2-\theta)}) + \log(1/\delta))/c + 1$ and $C > 0$ is some constant.

where $a = 3(d \log(3))$

2. ERM for non-negative, Lipschitz continuous and smooth convex random functions

Besides the Lipschitz continuity, we further assume $f(\mathbf{w}; \mathbf{z})$ is a non-negative and L-smooth convex function w.r.t w for any $z \in \mathbb{Z}$. It is notable that we do not assume that $r(\mathbf{w})$ is smooth.

EF pro

A for *G*-Lipschitz continuous and *L*-smooth random functions. With
ability at least
$$1 - \delta$$
 we have
$$P(\widehat{\mathbf{w}}) - P_* \leq O\left(\frac{d\log n + \log(1/\delta)}{n} + \left[\frac{(d\log n + \log(1/\delta))P_*}{n}\right]^{\frac{1}{2-\theta}}\right).$$

In $n \geq \Omega\left(\left(\alpha^{1/\theta} d\log n\right)^{2-\theta}\right)$, with probability at least $1 - \delta$,
$$P(\widehat{\mathbf{w}}) - P_* \leq O\left(\left[\frac{d\log n + \log(1/\delta)}{n}\right]^{\frac{2}{2-\theta}} + \left[\frac{(d\log n + \log(1/\delta))P_*}{n}\right]^{\frac{1}{2-\theta}}\right).$$

RM for *G*-Lipschitz continuous and *L*-smooth random functions. With
bability at least
$$1 - \delta$$
 we have
$$P(\widehat{\mathbf{w}}) - P_* \leq O\left(\frac{d\log n + \log(1/\delta)}{n} + \left[\frac{(d\log n + \log(1/\delta))P_*}{n}\right]^{\frac{1}{2-\theta}}\right).$$

hen $n \geq \Omega\left(\left(\alpha^{1/\theta} d\log n\right)^{2-\theta}\right)$, with probability at least $1 - \delta$,
$$P(\widehat{\mathbf{w}}) - P_* \leq O\left(\left[\frac{d\log n + \log(1/\delta)}{n}\right]^{\frac{2}{2-\theta}} + \left[\frac{(d\log n + \log(1/\delta))P_*}{n}\right]^{\frac{1}{2-\theta}}\right).$$

Efficient SA for Lipschitz Continuous Random Functions

Algorithm 1 SSG($\mathbf{w}_1, \gamma, T, W$)	Algorithn
Require: $\mathbf{w}_1 \in \mathcal{W}, \ \gamma > 0 \text{ and } T$	1: Set R
Ensure: $\widehat{\mathbf{w}}_T$	1, n_0 =
1: for $t = 1,, T$ do	2: for k =
2: $\mathbf{w}_{t+1} = \prod_{\mathcal{W}} (\mathbf{w}_t - \gamma g_t)$	3: Set γ
3: end for	4: $\widehat{\mathbf{W}}_k$
4: $\widehat{\mathbf{w}}_T = \frac{1}{T+1} \sum_{t=1}^{T+1} \mathbf{w}_t$	$\mathcal{B}(\widehat{\mathbf{w}}_k$
5: return $\widehat{\mathbf{w}}_T$	5: end f
	6: return

ASA for *G*-Lipschitz continuous random functions. Suppose $\|\mathbf{w}_1 - \mathbf{w}^*\|_2 \leq R_0$, where w^{*} is the closest optimal solution to w₁. Define $\bar{\alpha} = \max(\alpha G^2, (R_0 G)^{2-\theta})$. For $n \ge 100$ and any $\delta \in (0, 1)$, with probability a

 $P(\widehat{\mathbf{w}}_m) - P_* \leq O\left(\frac{\bar{\alpha}(\log(n)\log(n))}{\log(n)}\right)$

m 2 ASA (\mathbf{w}_1, n, R_0) $R_0 = 2R$, $\widehat{\mathbf{w}}_0 = \mathbf{w}_1$, $m = \left\lfloor \frac{1}{2} \log_2 \frac{2n}{\log_2 n} \right\rfloor - 1$ $= \lfloor n/m \rfloor$ $= 1, \dots, m \, \mathbf{do}$ $\gamma_k = \frac{R_{k-1}}{G_N / n_0 + 1}$ and $R_k = R_{k-1} / 2$ $\mathsf{SSG}(\widehat{\mathbf{w}}_{k-1},\gamma_k,n_0,\mathcal{W} \cap \mathbb{C})$ $(k-1, R_{k-1}))$ $\widehat{\mathbf{W}}_{m}$

at least
$$1 - \delta$$
, we have

$$\left(\frac{\operatorname{g}(\log(n)/\delta))}{n}\right)^{\frac{1}{2-\epsilon}}$$

 $\mathbf{W}^{\mathsf{T}}(\mathbf{Z}') + c.$

 $1, \alpha$).

Piecewise Linear Problem

dron.

problem (8) satisfies $EBC(\theta = 1, \alpha)$.

Risk Minimization Problems over an ℓ_2 **ball.** Consider the following problem $\min_{\|\mathbf{w}\|_2 \le B} P(\mathbf{w}) \triangleq \mathbb{E}_{\mathbf{z}}[f(\mathbf{w}, \mathbf{z})]$ (9) Assuming that $P(\mathbf{w})$ is convex and $\min_{\mathbf{w} \in \mathbb{R}^d} P(\mathbf{w}) < \min_{\|\mathbf{w}\|_2 \leq B} P(\mathbf{w})$, we can show that EBC($\theta = 1, \alpha$) holds.

mization:

 $\min_{\|\mathbf{w}\|_1 \le B} \mathbf{z}$

problem (10) satisfies $EBC(\theta = 1, \alpha)$.

regularized expected square loss minimization problem

Applications

Quadratic Problems (QP): $\min_{\mathbf{w} \in \mathcal{W}} P(\mathbf{w}) \triangleq \mathbf{w}^{\mathsf{T}} \mathbb{E}_{\mathbf{z}}[A(\mathbf{z})]\mathbf{w} + \mathbf{w}^{\mathsf{T}} \mathbb{E}_{\mathbf{z}'}[\underline{(\mathbf{z}')}] + c$ (7) where c is a constant. The random function can be taken as $f(\mathbf{w}, \mathbf{z}, \mathbf{z}') = \mathbf{w}^{\mathsf{T}} A(\mathbf{z}) \mathbf{w} + \mathbf{z} \mathbf{w}^{\mathsf{T}} A(\mathbf{z}) \mathbf{w} \mathbf{w}$

Remark: If $\mathbb{E}_{z}[A(z)]$ is a positive semi-definite matrix (not necessarily positive definite) and W is a bounded polyhedron, then the problem (7) satisfies EBC(θ =

$$\mathbf{ms} (\mathbf{PLP}): \min_{\mathbf{w} \in \mathcal{W}} P(\mathbf{w}) \triangleq \mathbb{E}[f(\mathbf{w}, \mathbf{z})]$$
(8)

where $\mathbb{E}[f(\mathbf{w}, \mathbf{z})]$ is a piecewise linear convex function and \mathcal{W} is a bounded polyhe-

Remark: If $\mathbb{E}[f(\mathbf{w}, \mathbf{z})]$ is piecewise linear and \mathcal{W} is a bounded polyhedron, then the

Risk Minimization with ℓ_1 **Regularization Problems.** For ℓ_1 regularized risk mini-

$$P(\mathbf{w}) \triangleq \mathbb{E}[f(\mathbf{w}; \mathbf{z})] + \lambda \|\mathbf{w}\|_{1}, \qquad (10)$$

Remark: If the first component is quadratic as in (7) or is piecewise linear, then the

Experimental Results

