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Background and Main Contributions

Background: Error bound conditions (EBC) have recently received increasing atten-
tion in the field of optimization for developing faster convergence.

Contributions: Studied EBC in statistical learning setting.
1. Developed fast and optimistic rates of empirical risk minimization (ERM) under

EBC for risk minimzation with Lipschitz continuous, smooth convex random
functions.

2. Established fast rates of efficient stochastic approximation (SA) algorithm for
risk minimization with Lipschitz continuous random functions, which requires
only one pass of n samples and adapts to EBC.

Problem of Interest

1. Consider the Risk Minimization Problem:

min
w∈W

P (w) ≜ Ez∼P[f(w,z)] (1)

and more generally

min
w∈W

P (w) ≜ Ez∼P[f(w,z)] + r(w) (2)

where f(⋅,z) ∶ W → R is a random function depending on a random variable
z ∈ Z that follows a distribution P, r(w) is a lower semi-continuous convex
function. W ⊂ Rd is a convex and compact set (i.e., ∥w∥2 ≤ R for all w ∈ W),
W∗ = arg minw∈W P (w) denotes the optimal set and P∗ = minw∈W P (w) denotes
the optimal risk.

2. P (w) satisfies the error bound condition EBC(θ,α), i.e., for ∀w ∈ W ,

∥w −w∗∥2
2 ≤ α(P (w) − P (w∗))θ, (3)

where w∗ = arg minu∈W∗ ∥u −w∥2 denote an optimal solution closest to w,W∗ is
the set containing all optimal solutions, θ ∈ (0, 1] and 0 < α < ∞.

Other Conditions and Relationships to EBC

(Bernstein Condition) Let β ∈ (0, 1] and B ≥ 1. Then (f,P,W) satisfies the
(β,B)-Bernstein condition if there exists a w∗ ∈ W such that for any w ∈ W

Ez[(f(w,z) − f(w∗,z))2] ≤ B(Ez[f(w,z) − f(w∗,z)])β. (4)

(v-Central Condition) Let v ∶ [0,∞) → [0,∞) be a bounded, non-decreasing
function satisfying v(x) > 0 for all x > 0. We say that (f,P,W) satisfies the
v-central condition if for all ε ≥ 0, there exists w∗ ∈ W such that for any w ∈ W
the following holds with η = v(ε).

Ez∼P [eη(f(w∗,z)−f(w,z))] ≤ eηε. (5)

EBC implies relaxed Berstein and v-central condition. Assume f(w,z) is a
G-Lipschitz continuous function w.r.t w for any z ∈ Z . For any w ∈ W , there
exists w∗ ∈ W∗ (which is actually the one closest to w), such that

Ez[(f(w,z) − f(w∗,z))2] ≤ B(Ez[f(w,z) − f(w∗,z)])θ,
where B = G2α, and Ez∼P [eη(f(w∗,z)−f(w,z))] ≤ eηε, where η = v(ε) ∶=
cε1−θ ∧ b. Additionally, for any ε > 0 if P (w) − P (w∗) ≥ ε, we
have Ez∼P [ev(ε)(f(w∗,z)−f(w,z))] ≤ 1, where b > 0 is any constant and c =
1/(αG2κ(4GRb)), where κ(x) = (ex − x − 1)/x2.

Remark: EBC does not require the existence of universal w∗, which is required by
original Bernstein and v-central condition.

Empirical Risk Minimization

Without loss of generality, we restrict our attention to (1) if r(w) is a Lipschitz con-
tinuous convex function.

1. ERM for Lipschitz continuous random functions
Assume f(w,z) is a G-Lipschitz continuous function w.r.t w for any z ∈ Z . If
r(w) is present, it can be absorbed into f(w,z). It is notable that we do not
assume f(w,z) is convex in terms of w or any z.

ERM for G-Lipschitz continuous random functions. For any n ≥ aC, with
probability at least 1 − δ we have

P (ŵ) − P∗ ≤ O (d logn + log(1/δ)
n

)
1

2−θ

, (6)

where a = 3(d log(32GRn1/(2−θ))+ log(1/δ))/c+1 and C > 0 is some constant.

2. ERM for non-negative, Lipschitz continuous and smooth convex random func-
tions
Besides the Lipschitz continuity, we further assume f(w; z) is a non-negative
and L-smooth convex function w.r.t w for any z ∈ Z . It is notable that we do not
assume that r(w) is smooth.

ERM for G-Lipschitz continuous and L-smooth random functions. With
probability at least 1 − δ we have

P (ŵ) − P∗ ≤ O
⎛
⎜
⎝
d logn + log(1/δ)

n
+ [(d logn + log(1/δ))P∗

n
]

1
2−θ⎞
⎟
⎠
.

When n ≥ Ω ((α1/θd logn)2−θ), with probability at least 1 − δ,

P (ŵ) − P∗ ≤ O
⎛
⎜
⎝
[d logn + log(1/δ)

n
]

2
2−θ

+ [(d logn + log(1/δ))P∗
n

]
1

2−θ⎞
⎟
⎠
.

Efficient SA for Lipschitz Continuous Random Functions

Algorithm 1 SSG(w1, γ, T,W)
Require: w1 ∈ W, γ > 0 and T
Ensure: ŵT

1: for t = 1, . . . , T do
2: wt+1 = ΠW(wt − γgt)
3: end for
4: ŵT = 1

T+1∑
T+1
t=1 wt

5: return ŵT

Algorithm 2 ASA(w1, n,R0)

1: Set R0 = 2R, ŵ0 = w1, m = ⌊1
2 log2

2n
log2n

⌋−
1, n0 = ⌊n/m⌋

2: for k = 1, . . . ,m do
3: Set γk = Rk−1

G
√
n0+1 and Rk = Rk−1/2

4: ŵk = SSG(ŵk−1, γk, n0,W ∩
B(ŵk−1,Rk−1))

5: end for
6: return ŵm

ASA for G-Lipschitz continuous random functions. Suppose ∥w1 −w∗∥2 ≤ R0,
where w∗ is the closest optimal solution to w1. Define ᾱ = max(αG2, (R0G)2−θ).
For n ≥ 100 and any δ ∈ (0, 1), with probability at least 1 − δ, we have

P (ŵm) − P∗ ≤ O(ᾱ(log(n) log(log(n)/δ))
n

)
1

2−θ

.

Applications

Quadratic Problems (QP): min
w∈W

P (w) ≜ w⊺Ez[A(z)]w +w⊺Ez′[(
¯
z′)] + c (7)

where c is a constant. The random function can be taken as f(w,z,z′) = w⊺A(z)w+
w⊺(

¯
z′) + c.

Remark: If Ez[A(z)] is a positive semi-definite matrix (not necessarily positive
definite) and W is a bounded polyhedron, then the problem (7) satisfies EBC(θ =
1, α).

Piecewise Linear Problems (PLP): min
w∈W

P (w) ≜ E[f(w,z)] (8)

where E[f(w,z)] is a piecewise linear convex function andW is a bounded polyhe-
dron.

Remark: If E[f(w,z)] is piecewise linear andW is a bounded polyhedron, then the
problem (8) satisfies EBC(θ = 1, α).

Risk Minimization Problems over an `2 ball. Consider the following problem

min
∥w∥2≤B

P (w) ≜ Ez[f(w,z)] (9)

Assuming that P (w) is convex and minw∈RdP (w) < min∥w∥2≤B P (w), we can show
that EBC(θ = 1, α) holds.

Risk Minimization with `1 Regularization Problems. For `1 regularized risk mini-
mization:

min
∥w∥1≤B

P (w) ≜ E[f(w; z)] + λ∥w∥1, (10)

Remark: If the first component is quadratic as in (7) or is piecewise linear, then the
problem (10) satisfies EBC(θ = 1, α).

Experimental Results
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Figure: Testing Error vs Iteration of ASA and other baselines for SA when solving an `1
regularized expected square loss minimization problem


