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Background and Main Contributions Theoretical Gurantee of AdaNCD Step Adaptive Algorithms with State-of-the-Art Complexities

Background: Negative curvature descent (NCD) needs to approximate the smallest
eigen-value of the Hessian matrix with a sufficient precision in order to achieve a

Algorlthm 5 AdaNCG™: (Xo, €1, O, 5) Algorlthm 6 AdaNCD-SCSG: (Xo, €1, , b, (5)

sufficiently accurate second-order stationary solution, which is computationally ex- Dete.rministic Objective When v'V*f(x)v < 0, the Algorithm 1 (AdaNCD") 1: §' =0/ ([1 + A (max(lifg’%l) + 2QL2)]) 1: Input: xg, €, , 0
pensive. provides a guarantee that > fork=1,2,.... do ’ 2. for j=1,2..... do
o (%) — F(x*) > max VTV f(x)V]? |V f(x)]? 3. X, = AdaNCG(xy, eil’”‘/?, 2.6") 3: Generate three random sets S, S, S;

Contributions: = 312 " 9L, 4: if |[Vf(Xy)| < e then 4: y; =SCSG-Epoch(x;,S,b)

1. Proposed a variant of NCD, i.e., adaptive Negative Curvauture Descent to allow 5. return %, 5: letg(y;) =V /fs(x;¢)
an adaptive error erendent on the curregt gradie%nt’s. magnitude 1n approximat- 6 else 6: (xj:1,V)) =
ing the sma.lles.t e1gen—va.1ue of th§ Hessian, Wth.h 1s able t.o r.educe tbe ov.er— Stochastic Objective Assume | Hs(x) - V2f(x) [ < e/12 and | g(x) - v f(x)] < 70 fu(x) _ 2 £(x) N AdaNCDmb(yj, 0,0,85,2(y:))
all complexity in computing negative curvature without sacrificing the iteration ¢ hold (with high probability). When v’ Hs(x)v < 0, the Algorithm 2 Ly ([ = Ry - 2/ L)) 7: i V]Hs(y;)v; > —e/2and |g(y;)] < e
complexity (AdaNCD™b) provides a guarantee (with high probability) that 8.  Xi+1 = then

2. Verified the practical effectiveness of the proposed algorithms by three experi- o T ; - , . Almost-Cvx-AGD( f;, Xy, %, 3¢2,5L1) 8: return y;
ments (cubic regularization, regularized non-linear least square, and one hidden f(x) - E[f(x")] > max { (-v SZ(X)V) B €2|v SgX)V| | lg(x)| € } 9 end if 9- end if
layer neural network) SL3 6.L5 4Ly Ly 10: end for 10: end for

If vi Hs(x)v < —€9/2, we have

) - f(x%) > max(

Problem of Interest ;
&, |g(x)|* €~

Deterministic Objective With probability at least 1 -0, the Algorithm AdaNCG*

Problem: Consider 24L5" 4L, returns a vector X, such that |V f(X;)| < € and A\pin(V2f(Xr)) > —€o with at
~ 1/2

mIiR% f(x) (1) most O (6—13 + ;162) AdaNCD steps in AdaNCG and O [(% ~ 13/2) + 662—2] gradient
X€ 2 € €16, 1

. . . . steps in Almost-Convex-AGD, and each step ;7 within AdaNCG™* requires time

Assumption: Simple Adaptive Algorithms with Second-order Convergence of T,,(f, max(ey, |V f(x;)|2*)/2,6,d), and the worse-case time complexity of

1. f(x) has L;-Lipschitz continuous gradient and L,-Lipschitz continuous Hessian. AdaNCG+ is O (( d_ . i) 4 de_%p) when using the Lanczos method for NCS.
2 Gi initial soluti h ists A\ < oo such th _ < A - . Algorithm 4 S-AdaNCG: (xo, €1, a, 0) ac’ ')
. Given an initial solution X, there exists A < oo such that f(xy) — f(x.) < A, Algorithm 3 AdaNCG: (x, 1, a,0)

where x, denotes the global minimum of (1); . 1: X =X, €= €2, 8 = 6 /5 (2,6
3. if f(x) is a stochastic objective, we assume each random function f(x;¢) is 18 X1 =X, &2=€ 1912 of 2: for j=1,2 do
. . . . . . . . . . I 2 1 »Er —~ —~
twice differentiable and has L-Lipschitz continuous gradient and L,-Lipschitz 2: 0" = 5/ (1+ max( S e )A), 3. Generate two random sets S;, S, Stochastic Objective Suppose |S| = O(max(1 [e2,1] (eg/ 2[91/2))), Si| = O(1/€?)
continuous Hessian, and its stochastic gradient has exponential tail behavior, i.e., 3: forj=1,2,...,do 4: let g(x;) = ﬁ Yees, V(x;6) and |Sy| = O(1/e5). With high probability, the Algorithm AdaNCD-SCSG returns
Lexp(|Vf(x:€) - Vf(x)[?/G*)] < exp(1) holds for any x € R%; 4 (X541, Vj)det T 50 (X4, V) 1 - a vector y; such that |V f(y;)| < 26 and A\pin(VZf(x;)) > —2¢; with at most
. . . . / —~ 1
4. a Hessian-vector product can be computed in O(d) time. 5. :Af‘daNCP ) (X, 7.&7 5 | Vf(X)Zz d AdaNCD™(x;, 8", So, g(x;)) 9, (ng + 6—13) calls of SCSG-Epoch and AdaNCD™. When ¢; = ¢, €5 = \/¢, then by
. . . . - | Vjv f(X])V] 2 2 an 6: If VT-HSQ(X]')V]' > —62/2 and i . : 1 e« XN/ d
Goal: find an approximate second-order stationary point with: IVf(x;)| <€ then lg(x )ﬁ < e then choosing b = NG the complexity is O(=5).
. | g0 =
[VIx)[ <e,  and  Apin(VEF(x)) 2 e, (2) 3: er:;ui;" %) 7: return x,
In our paper, we assume e; = €. Define fs(x) = 5 Yesf(Xx:6).9(x) = 8: end if Experimental Results
S 8: end for o: end for

5 Sees VS (x:6), Hs(%) = 15 Tees V2 (%:€).

0.25

egative Curvature Search: Assume there exists an algorithm that can compute a . . e . . . : —Nep-he —Neo-he o5l —_Nep-he
N S ¢ . > L P 5 e P Deterministic Objective For any « € (0, 1], the AdaNCG algorithm terminates at o1 No | NGo | NGo
unit-length negative curvature direction v € R“ of a function f(x) satisfying . . 02 —hd@ance | 0249 ‘ — AdaNCG |-
2 , iteration 7, for some ) . L as|
. T _ 2 03| 2 2
Auin(V2F (%)) 2 VIV f (x)v - 2 3) - 1212 21, . 1203 2L,) 5.
with high probability 1 — §. We refer to such an algorithm as NCS( f,x,¢,0) and J = 1+ max ST (f(x1) = f(x.)) € 1+ max ETRAEN (#) 05 ass | )
denote its time complexity by T,,(f, ¢, 0, d). with |[Vf(x,)| < e, and with probability at least 1 — 0, Apin(V2f(x,)) > I T —— N b
Adaptive Negative Curvature Step —€2, Furthermore, the j-th iteration requires time a complexity of T Nimberotoraciecals T Numberofomdecals  rof T 7 Numberofomdecals gt

T,(f, max(ef, |V f(x;)[), 0, d).
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Algorlthm 1 AdaNCDdet(X,Oé,é, Vf(X)) Algorlthm 2 AdaNCD™ (X,Ck,5,8,g(X))

1 Apply NCS(f,x, mledw/Gal) 5y 1 1 Apply  NCS(fs,x, == §) - to
" 2 ’ find a unit vector v satisfying (3)

—S-AdaNCG
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. _ ] ] . R R _ 39G?2 2 _ 9216[/% 4_d 8
f|n2d a unit vegctorvsa;tlsfylng (3) . i 2VHSGIY)  elviHsCOV! | JgOOl? _ ¢ Stf)chastlc ijectlve Set |S1| = > (1 + 31.og( <)) agd So| = —= .log( 7): § ox l
o jf A v3 L];(X)V) > ”%Sﬂﬂ then - | 312 T > 4L, L; }| With probability 1 — §, the S-AdaNCG algorithm terminates at some iteration 08 ol .|
2 1 . -~ . . . -0.6 15}
3 x+ =X—2|VTvzf(X)V|Sign(VTVf(X))V th?n A HSGV] o p =1/ 7+ = O(max (e_lg’e_l%)) and upon termination it holds that |V f(x;, )| < 2¢ and N | . . S |
4 else 2 i e}lcse_ X = Lo ZV, r(Z == ) o / >\m1n (VZf(X]*)) 2 _262 Wlth pI‘Obablhty 1 _ 35. Furthermore, the worst-case tlme ° Number of oracle caIIs6 ><1048 o™ Number of oracle calls «10% Number of oracle calls x10°
et o L : : i S ~~ 1 1\(d ) Figure: Comparison of deterministic algorithms (upper) and stochastic algorithms (lower) for
2' X d—':’( lef(X) 5: xt=x- Lilg(x) complexity of 5-AdaNCG 1s given by O (max (63’ 6?) (6? +Tn(fs, €2,0 ’d)))' solving cubic regularization, regularized nonlinear least square, and NN (from left to right).
> enal .
6: end if
7: return x*,v 7. return x*.v




