Background and Main Contributions

Background: Negative curvature descent (NCD) needs to approximate the smallest eigen-value of the Hessian matrix with a sufficient precision in order to achieve a sufficiently accurate second-order stationary solution, which is computationally expensive.

Contributions:

- 1. Proposed a variant of NCD, i.e., adaptive Negative Curvauture Descent to allow an adaptive error dependent on the current gradient's magnitude in approximating the smallest eigen-value of the Hessian, which is able to reduce the overall complexity in computing negative curvature without sacrificing the iteration complexity
- 2. Verified the practical effectiveness of the proposed algorithms by three experiments (cubic regularization, regularized non-linear least square, and one hidden layer neural network)

Problem of Interest

Problem: Consider

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$$

Assumption:

- 1. $f(\mathbf{x})$ has L_1 -Lipschitz continuous gradient and L_2 -Lipschitz continuous Hessian.
- 2. Given an initial solution \mathbf{x}_0 , there exists $\Delta < \infty$ such that $f(\mathbf{x}_0) f(\mathbf{x}_*) \leq \Delta$, where x_* denotes the global minimum of (1);
- 3. if $f(\mathbf{x})$ is a stochastic objective, we assume each random function $f(\mathbf{x};\xi)$ is twice differentiable and has L_1 -Lipschitz continuous gradient and L_2 -Lipschitz continuous Hessian, and its stochastic gradient has exponential tail behavior, i.e., $\mathbb{E}\left[\exp\left(\|\nabla f(\mathbf{x};\xi) - \nabla f(\mathbf{x})\|^2/G^2\right)\right] \le \exp(1)$ holds for any $\mathbf{x} \in \mathbb{R}^d$;
- 4. a Hessian-vector product can be computed in O(d) time.

Goal: find an approximate second-order stationary point with:

$$\|\nabla f(\mathbf{x})\| \le \epsilon_1, \quad \text{and} \quad \lambda_{\min}(\nabla^2 f(\mathbf{x})) \ge -\epsilon_2, \tag{2}$$

In our paper, we assume $\epsilon_2 = \epsilon_1^{\alpha}$. Define $f_{\mathcal{S}}(\mathbf{x}) = \frac{1}{|\mathcal{S}|} \sum_{\xi \in \mathcal{S}} f(\mathbf{x};\xi), g(\mathbf{x}) = \frac{1}{|\mathcal{S}|} \sum_{\xi \in \mathcal{S}} \nabla f(\mathbf{x};\xi), H_{\mathcal{S}}(\mathbf{x}) = \frac{1}{|\mathcal{S}|} \sum_{\xi \in \mathcal{S}} \nabla^2 f(\mathbf{x};\xi).$

Negative Curvature Search: Assume there exists an algorithm that can compute a unit-length negative curvature direction $\mathbf{v} \in \mathbb{R}^d$ of a function $f(\mathbf{x})$ satisfying

$$\lambda_{\min}(\nabla^2 f(\mathbf{x})) \geq \mathbf{v}^{\mathsf{T}} \nabla^2 f(\mathbf{x}) \mathbf{v} - \varepsilon$$

(3)with high probability $1 - \delta$. We refer to such an algorithm as NCS $(f, \mathbf{x}, \varepsilon, \delta)$ and denote its time complexity by $T_n(f, \varepsilon, \delta, d)$.

Adaptive Negative Curvature Step

Algorithm 1 AdaNCD ^{det} ($\mathbf{x}, \alpha, \delta, \nabla f(\mathbf{x})$)	Algorithm 2 AdaNC
Algorithm 1 AdaNCD ^{det} ($\mathbf{x}, \alpha, \delta, \nabla f(\mathbf{x})$) 1: Apply NCS($f, \mathbf{x}, \frac{\max(\epsilon_2, \ \nabla f(\mathbf{x})\ ^{\alpha})}{2}, \delta$) to find a unit vector \mathbf{v} satisfying (3) 2: if $\frac{2(-\mathbf{v}^{T}\nabla^2 f(\mathbf{x})\mathbf{v})^3}{3L_2^2} > \frac{\ \nabla f(\mathbf{x})\ ^2}{2L_1}$ then 3: $\mathbf{x}^+ = \mathbf{x} - \frac{2 \mathbf{v}^{T}\nabla^2 f(\mathbf{x})\mathbf{v} }{L_2}$ sign($\mathbf{v}^{T}\nabla f(\mathbf{x})$) \mathbf{v} , 4: else 5: $\mathbf{x}^+ = \mathbf{x} - \frac{1}{L_1}\nabla f(\mathbf{x})$ 6: end if	1: Apply NCS $(f_{S},$ find a unit vector 2: if $\frac{2(-\mathbf{v}^{T}H_{S}(\mathbf{x})\mathbf{v})^{3}}{3L_{2}^{2}} - \frac{\epsilon_{2}}{3L_{2}^{2}}$ then 3: $\mathbf{x}^{+} = \mathbf{x} - \frac{2 \mathbf{v}^{T}H_{S}(\mathbf{x})\mathbf{v} }{L_{2}}$ 4: else 5: $\mathbf{x}^{+} = \mathbf{x} - \frac{1}{L_{1}}\mathbf{g}(\mathbf{x})$
7: return x^+, v	6: end if 7: return x^+ , v

Adaptive Negative Curvature Descent with Applications in Non-convex Optimization

Mingrui Liu[†], Zhe Li[†], Xiaoyu Wang[‡], Jinfeng Yi[‡], Tianbao Yang[†] [†]Department of Computer Science, The University of Iowa [‡]Intellifusion [‡]JD AI Research

Theoretical Gurantee of AdaNCD Step

(1)

 $\mathsf{CD^{mb}}(\mathbf{x}, \alpha, \delta, \mathcal{S}, \mathbf{g}(\mathbf{x}))$ $(\mathbf{x}, \mathbf{x}, rac{\max(\epsilon_2, \|\mathbf{g}(\mathbf{x})\|^{lpha})}{2}, \delta)$ to

Deterministic Objective When $\mathbf{v}^{\mathsf{T}} \nabla^2 f(\mathbf{x}) \mathbf{v} \leq \mathbf{v}^{\mathsf{T}} \nabla^2 f(\mathbf{x}) \mathbf{v}$ provides a guarantee that

 $f(\mathbf{x}) - f(\mathbf{x}^{+}) \ge \max\left(\frac{2|\mathbf{v}^{\top}\nabla^2 f(\mathbf{x}^{+})|}{3L_2^2}\right)$

Stochastic Objective Assume $||H_{\mathcal{S}}(\mathbf{x}) - \nabla^2 f(\mathbf{x})|$ hold (with high probability). When \mathbf{v}^{T} (AdaNCD^{mb}) provides a guarantee (with high pr $f(\mathbf{x}) - \mathbb{E}[f(\mathbf{x}^+)] \ge \max \left\{ \frac{2(-\mathbf{v}^\top H_{\mathcal{S}}(\mathbf{x})\mathbf{v})^3}{3L_2^2} - \frac{1}{3L_2^2} \right\}$ If $\mathbf{v}^{\mathsf{T}} H_{\mathcal{S}}(\mathbf{x}) \mathbf{v} \leq -\epsilon_2/2$, we have $f(\mathbf{x}) - f(\mathbf{x}^+) \ge \max\left(\frac{\epsilon_2^3}{24L_2^2}, -\frac{\epsilon_2^3}{24L_2^2}\right)$

Simple Adaptive Algorithms with Second-order Convergence

Algorithm 3 AdaNCG: $(\mathbf{x}_0, \epsilon_1, \alpha, \delta)$	Alg	jor
1: $\mathbf{x}_1 = \mathbf{x}_0, \ \epsilon_2 = \epsilon_1^{\alpha}$ 2: $\delta' = \delta/(1 + \max\left(\frac{12L_2^2}{\epsilon_2^3}, \frac{2L_1}{\epsilon_1^2}\right)\Delta),$ 3: for $j = 1, 2, \dots, $ do 4: $(\mathbf{x}_{j+1}, \mathbf{v}_j)$ = AdaNCD ^{det} $(\mathbf{x}_j, \alpha, \delta', \nabla f(\mathbf{x}))$	2: 3: 4: 5:	x ₁ fo G le (2 A
5: if $\mathbf{v}_{j}^{T} \nabla^{2} f(\mathbf{x}_{j}) \mathbf{v}_{j} > -\frac{\epsilon_{2}}{2}$ and $\ \nabla f(\mathbf{x}_{j})\ \leq \epsilon_{1}$ then 6: return \mathbf{x}_{j} 7: end if 8: end for	6: 7: 8: 9:	IT ∥∦ r e en

$$j_* \le 1 + \max\left(\frac{12L_2^2}{\epsilon_1^{3\alpha}}, \frac{2L_1}{\epsilon_1^2}\right) \left(f(\mathbf{x}_1) - f(\mathbf{x}_{j_*})\right)$$

 $) \leq 1 + \max\left(\frac{12L_2^2}{\epsilon_1^{3\alpha}}, \frac{2L_1}{\epsilon_1^2}\right)\Delta,$ (4) Furthermore, the j-th iteration requires time a complexity of

Deterministic Objective For any $\alpha \in (0, 1]$, the AdaNCG algorithm terminates at iteration j_* for some with $\|\nabla f(\mathbf{x}_{j_*})\| \leq \epsilon_1$, and with probability at least $1 - \delta$, $\lambda_{\min}(\nabla^2 f(\mathbf{x}_{j_*})) \geq 1$ $T_n(f, \max(\epsilon_1^{\alpha}, \|\nabla f(\mathbf{x}_j)\|^{\alpha}), \delta', d).$ $\begin{array}{l} \text{Stochastic Objective Set } |\mathcal{S}_1| &= \frac{32G^2}{\epsilon_1^2} (1 + 3\log(\frac{2}{\delta'})) \text{ and } |\mathcal{S}_2| &= \frac{9216L_1^2}{\epsilon_2^2}\log(\frac{4d}{\delta'}). \\ \hline \text{With probability } 1 - \delta, \text{ the S-AdaNCG algorithm terminates at some iteration} \end{array}$

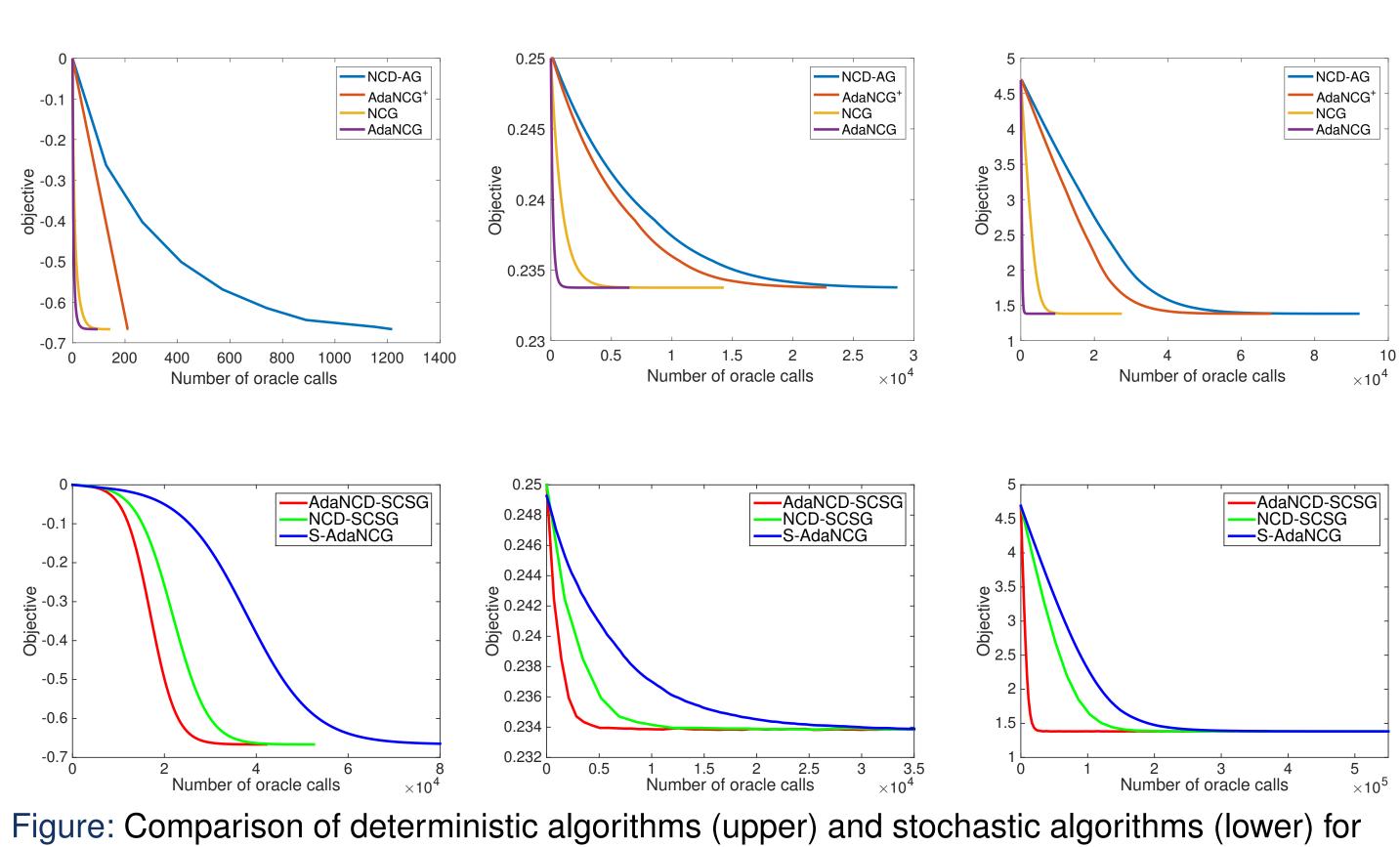
(x)v $ ^3$, $\frac{\ \nabla f(\mathbf{x})\ ^2}{2L_1}$) (AdaNCD ^{det})
$\ \mathbf{x}\ _{2} \leq \epsilon_{2}/12 \text{ and } \ \mathbf{g}(\mathbf{x}) - \nabla f(\mathbf{x})\ \leq H_{\mathcal{S}}(\mathbf{x})\mathbf{v} \leq 0, \text{ the Algorithm 2 probability) that}$
$-\frac{\epsilon_2 \mathbf{v}^{T} H_{\mathcal{S}}(\mathbf{x}) \mathbf{v} ^2}{6L_2^2}, \frac{\ \mathbf{g}(\mathbf{x})\ ^2}{4L_1} - \frac{\epsilon'^2}{L_1} \bigg\}$
$\frac{\ \mathbf{g}(\mathbf{x})\ ^2}{4L_1} - \frac{\epsilon'^2}{L_1} \right)$

rithm 4 S-AdaNCG: $(\mathbf{x}_0, \epsilon_1, \alpha, \delta)$ $\epsilon_1 = \mathbf{x}_0, \ \epsilon_2 = \epsilon_1^{\alpha}, \ \delta' = \delta / \widetilde{O}(\epsilon_1^{-2}, \epsilon_2^{-3})$ or j = 1, 2, ..., doGenerate two random sets S_1, S_2 let $\mathbf{g}(\mathbf{x}_j) = \frac{1}{|\mathcal{S}_1|} \sum_{\xi \in \mathcal{S}_1} \nabla f(\mathbf{x}; \xi)$ $(\mathbf{x}_{j+1}, \mathbf{v}_j)$ = $\mathsf{AdaNCD}^{\mathsf{mb}}(\mathbf{x}_j, \alpha, \delta', \mathcal{S}_2, \mathbf{g}(\mathbf{x}_j))$ $\mathbf{v}_{i}^{\mathsf{T}}H_{\mathcal{S}_{2}}(\mathbf{x}_{j})\mathbf{v}_{j} > -\epsilon_{2}/2$ and $\|\mathbf{g}(\mathbf{x}_j)\| \leq \epsilon_1$ then return \mathbf{x}_i end if nd for

Adaptive Algorithms with State-of-the-Art Complexities

Algorithm 5 AdaNCG+:
$$(\mathbf{x}_0, \mathbf{x}_0)$$
1: $\delta' = \delta / ([1 + \Delta (\frac{\max(12L_2^2, 2L_1)}{\epsilon_2^3})])$ 2: for $k = 1, 2, ..., do$ 3: $\widehat{\mathbf{x}}_k = AdaNCG(\mathbf{x}_k, \epsilon_1^{3\alpha/2}, \frac{2}{3})$ 4: if $\|\nabla f(\widehat{\mathbf{x}}_k)\| \le \epsilon_1$ then5: return $\widehat{\mathbf{x}}_k$ 6: else7: $f_k(\mathbf{x}) = L_1([\|\mathbf{x} - \widehat{\mathbf{x}}_k\| - \epsilon_2/L_2]_+)^2$ 8: \mathbf{x}_{k+1} Almost-Cvx-AGD $(f_j, \widehat{\mathbf{x}}_k)$ 9: end if10: end forDeterministic Objective With
returns a vector $\widehat{\mathbf{x}}_k$ such that
most $O\left(\frac{1}{\epsilon_2^2} + \frac{1}{\epsilon_1\epsilon_2}\right)$ AdaNCD st
steps in Almost-Convex-AGI

choosing $b = \frac{1}{\sqrt{\epsilon}}$, the complexity is $\widetilde{O}(\frac{d}{\epsilon^{3.5}})$.



solving cubic regularization, regularized nonlinear least square, and NN (from left to right).

$\overline{(,\epsilon_1,lpha,\delta)}$	Alç	jorithm 6 AdaNCD-SCSG: $(\mathbf{x}_0, \epsilon_1, \alpha, b, \delta)$
$\left(\frac{1}{\epsilon_1} + \frac{2\sqrt{10}L_2}{\epsilon_1\epsilon_2}\right)\right)$		Input: $\mathbf{x}_0, \epsilon_1, \alpha, \delta$
		for $j = 1, 2,, do$
$(\frac{2}{3},\delta')$		Generate three random sets $\mathcal{S}, \mathcal{S}_1, \mathcal{S}_2$
	4:	$\mathbf{y}_j = SCSG-Epoch(\mathbf{x}_j, \mathcal{S}, b)$
	5:	let $\mathbf{g}(\mathbf{y}_j) = \nabla f_{\mathcal{S}_1}(\mathbf{x}; \xi)$
	6:	$(\mathbf{x}_{j+1}, \mathbf{v}_j) =$
$f(\mathbf{x}) +$		$AdaNCD^{mb}(\mathbf{y}_j, \alpha, \delta, \mathcal{S}_2, \mathbf{g}(\mathbf{y}_j))$
$j(\mathbf{X})$ + 2	7:	if $\mathbf{v}_j^{T} H_{\mathcal{S}_2}(\mathbf{y}_j) \mathbf{v}_j > -\epsilon_2/2$ and $\ \mathbf{g}(\mathbf{y}_j)\ \le \epsilon_1$
=		then
$(k, \frac{\epsilon_1}{2}, 3\epsilon_2, 5L_1)$	8:	return y_j
-		end if
	10:	end for

h probability at least $1 - \delta$, the Algorithm AdaNCG⁺ $\|\nabla f(\widehat{\mathbf{x}}_k)\| \leq \epsilon_1 \text{ and } \lambda_{\min}(\nabla^2 f(\widehat{\mathbf{x}}_k)) \geq -\epsilon_2 \text{ with at}$ steps in AdaNCG and $\widetilde{O}\left[\left(\frac{1}{\epsilon_{2}^{7/2}} + \frac{1}{\epsilon_{1}\epsilon_{2}^{3/2}}\right) + \frac{\epsilon_{2}^{1/2}}{\epsilon_{1}^{2}}\right]$ gradient D, and each step j within AdaNCG⁺ requires time of $T_n(f, \max(\epsilon_2, \|\nabla f(\mathbf{x}_j)\|^{2/3})^{1/2}, \delta', d)$, and the worse-case time complexity of AdaNCG⁺ is $\widetilde{O}\left(\left(\frac{d}{\epsilon_1\epsilon_2^{3/2}} + \frac{d}{\epsilon_1^{7/2}}\right) + \frac{d\epsilon_2^{1/2}}{\epsilon_1^2}\right)$ when using the Lanczos method for NCS.

Stochastic Objective Suppose $|\mathcal{S}| = \widetilde{O}(\max(1/\epsilon_1^2, 1/(\epsilon_2^{9/2}b^{1/2}))), |\mathcal{S}_1| = \widetilde{O}(1/\epsilon_1^2)$ and $|S_2| = O(1/\epsilon_2^2)$. With high probability, the Algorithm AdaNCD-SCSG returns a vector \mathbf{y}_j such that $\|\nabla f(\mathbf{y}_j)\| \leq 2\epsilon_1$ and $\lambda_{\min}(\nabla^2 f(\mathbf{x}_j)) \geq -2\epsilon_2$ with at most $\widetilde{O}\left(\frac{b^{1/3}}{\epsilon_1^{4/3}} + \frac{1}{\epsilon_2^3}\right)$ calls of SCSG-Epoch and AdaNCD^{mb}. When $\epsilon_1 = \epsilon$, $\epsilon_2 = \sqrt{\epsilon}$, then by

Experimental Results