
Adaptive Negative Curvature Descent with Applications in Non-convex Optimization
Mingrui Liu†, Zhe Li†, Xiaoyu Wang‡, Jinfeng Yi♮, Tianbao Yang†

†Department of Computer Science, The University of Iowa ‡Intellifusion ♮JD AI Research

Background and Main Contributions

Background: Negative curvature descent (NCD) needs to approximate the smallest
eigen-value of the Hessian matrix with a sufficient precision in order to achieve a
sufficiently accurate second-order stationary solution, which is computationally ex-
pensive.

Contributions:
1. Proposed a variant of NCD, i.e., adaptive Negative Curvauture Descent to allow

an adaptive error dependent on the current gradient’s magnitude in approximat-
ing the smallest eigen-value of the Hessian, which is able to reduce the over-
all complexity in computing negative curvature without sacrificing the iteration
complexity

2. Verified the practical effectiveness of the proposed algorithms by three experi-
ments (cubic regularization, regularized non-linear least square, and one hidden
layer neural network)

Problem of Interest

Problem: Consider

min
x∈Rd

f(x) (1)

Assumption:
1. f(x) hasL1-Lipschitz continuous gradient andL2-Lipschitz continuous Hessian.
2. Given an initial solution x0, there exists ∆ < ∞ such that f(x0) − f(x∗) ≤ ∆,

where x∗ denotes the global minimum of (1);
3. if f(x) is a stochastic objective, we assume each random function f(x; ξ) is

twice differentiable and has L1-Lipschitz continuous gradient and L2-Lipschitz
continuous Hessian, and its stochastic gradient has exponential tail behavior, i.e.,
E[exp(∥∇f(x; ξ) −∇f(x)∥2/G2)] ≤ exp(1) holds for any x ∈ Rd;

4. a Hessian-vector product can be computed in O(d) time.

Goal: find an approximate second-order stationary point with:

∥∇f(x)∥ ≤ ε1, and λmin(∇2f(x)) ≥ −ε2, (2)

In our paper, we assume ε2 = εα1 . Define fS(x) = 1
∣S ∣∑ξ∈S f(x; ξ),g(x) =

1
∣S ∣∑ξ∈S∇f(x; ξ), HS(x) = 1

∣S ∣∑ξ∈S∇2f(x; ξ).

Negative Curvature Search: Assume there exists an algorithm that can compute a
unit-length negative curvature direction v ∈ Rd of a function f(x) satisfying

λmin(∇2f(x)) ≥ v⊺∇2f(x)v − ε (3)

with high probability 1 − δ. We refer to such an algorithm as NCS(f,x, ε, δ) and
denote its time complexity by Tn(f, ε, δ, d).

Adaptive Negative Curvature Step

Algorithm 1 AdaNCDdet(x, α, δ,∇f(x))
1: Apply NCS(f,x, max(ε2,∥∇f(x)∥α)

2 , δ) to
find a unit vector v satisfying (3)

2: if 2(−v⊺∇2f(x)v)3

3L2
2

> ∥∇f(x)∥2

2L1
then

3: x+ = x − 2∣v⊺∇2f(x)v∣
L2

sign(v⊺∇f(x))v,
4: else
5: x+ = x − 1

L1
∇f(x)

6: end if
7: return x+,v

Algorithm 2 AdaNCDmb(x, α, δ,S,g(x))
1: Apply NCS(fS,x, max(ε2,∥g(x)∥α)

2 , δ) to
find a unit vector v satisfying (3)

2: if 2(−v⊺HS(x)v)3

3L2
2

− ε2∣v⊺HS(x)v∣2
6L2

2
> ∥g(x)∥2

4L1
− ε′2

L1

then
3: x+ = x − 2∣v⊺HS(x)v∣

L2
zv, Pr(z = ±1) = 1/2

4: else
5: x+ = x − 1

L1
g(x)

6: end if
7: return x+,v

Remark: z ∈ {1,−1} is a Rademacher random variable

Theoretical Gurantee of AdaNCD Step

Deterministic Objective When v⊺∇2f(x)v ≤ 0, the Algorithm 1 (AdaNCDdet)
provides a guarantee that

f(x) − f(x+) ≥ max (2∣v⊺∇2f(x)v∣3
3L2

2
,
∥∇f(x)∥2

2L1
)

Stochastic Objective Assume ∥HS(x)−∇2f(x)∥2 ≤ ε2/12 and ∥g(x)−∇f(x)∥ ≤
ε′ hold (with high probability). When v⊺HS(x)v ≤ 0, the Algorithm 2
(AdaNCDmb) provides a guarantee (with high probability) that

f(x) −E[f(x+)] ≥ max {2(−v⊺HS(x)v)3

3L2
2

− ε2∣v⊺HS(x)v∣2
6L2

2
,
∥g(x)∥2

4L1
− ε

′2

L1
}

If v⊺HS(x)v ≤ −ε2/2, we have

f(x) − f(x+) ≥ max (ε3
2

24L2
2
,
∥g(x)∥2

4L1
− ε

′2

L1
)

Simple Adaptive Algorithms with Second-order Convergence

Algorithm 3 AdaNCG: (x0, ε1, α, δ)
1: x1 = x0, ε2 = εα1
2: δ′ = δ/(1 +max (12L2

2
ε3

2
, 2L1
ε2

1
)∆),

3: for j = 1, 2, . . . , do
4: (xj+1,vj) =

AdaNCDdet(xj, α, δ′,∇f(x))
5: if v⊺

j∇2f(xj)vj > −ε2
2 and

∥∇f(xj)∥ ≤ ε1 then
6: return xj
7: end if
8: end for

Algorithm 4 S-AdaNCG: (x0, ε1, α, δ)
1: x1 = x0, ε2 = εα1 , δ′ = δ/Õ(ε−2

1 , ε
−3
2)

2: for j = 1, 2, . . . , do
3: Generate two random sets S1,S2
4: let g(xj) = 1

∣S1∣∑ξ∈S1∇f(x; ξ)
5: (xj+1,vj) =

AdaNCDmb(xj, α, δ′,S2,g(xj))
6: if v⊺

jHS2(xj)vj > −ε2/2 and
∥g(xj)∥ ≤ ε1 then

7: return xj
8: end if
9: end for

Deterministic Objective For any α ∈ (0, 1], the AdaNCG algorithm terminates at
iteration j∗ for some

j∗ ≤ 1 +max (12L2
2

ε3α
1
,
2L1

ε2
1
)(f(x1) − f(xj∗)) ≤ 1 +max (12L2

2
ε3α

1
,
2L1

ε2
1
)∆, (4)

with ∥∇f(xj∗)∥ ≤ ε1, and with probability at least 1 − δ, λmin(∇2f(xj∗)) ≥
−εα1 . Furthermore, the j-th iteration requires time a complexity of
Tn(f,max(εα1 , ∥∇f(xj)∥α), δ′, d).

Stochastic Objective Set ∣S1∣ = 32G2

ε2
1
(1 + 3 log(2

δ′)) and ∣S2∣ = 9216L2
1

ε2
2

log(4d
δ′).

With probability 1 − δ, the S-AdaNCG algorithm terminates at some iteration
j∗ = Õ(max (1

ε3
2
, 1
ε2

1
)) and upon termination it holds that ∥∇f(xj∗)∥ ≤ 2ε1 and

λmin (∇2f(xj∗)) ≥ −2ε2 with probability 1 − 3δ. Furthermore, the worst-case time
complexity of S-AdaNCG is given by Õ (max (1

ε3
2
, 1
ε2

1
) (d

ε2
1
+ Tn(fS2, ε2, δ′, d))).

Adaptive Algorithms with State-of-the-Art Complexities

Algorithm 5 AdaNCG+: (x0, ε1, α, δ)
1: δ′ = δ/ (⌈1 +∆ (max(12L2

2,2L1)
ε3

2
+ 2

√
10L2
ε1ε2

)⌉)
2: for k = 1, 2, . . . , do
3: x̂k = AdaNCG(xk, ε3α/2

1 , 2
3, δ

′)
4: if ∥∇f(x̂k)∥ ≤ ε1 then
5: return x̂k
6: else
7: fk(x) = f(x) +

L1 ([∥x − x̂k∥ − ε2/L2]+)2

8: xk+1 =
Almost-Cvx-AGD(fj, x̂k, ε1

2 , 3ε2, 5L1)
9: end if

10: end for

Algorithm 6 AdaNCD-SCSG: (x0, ε1, α, b, δ)
1: Input: x0, ε1, α, δ
2: for j = 1, 2, . . . , do
3: Generate three random sets S,S1,S2
4: yj = SCSG-Epoch(xj,S, b)
5: let g(yj) = ∇fS1(x; ξ)
6: (xj+1,vj) =

AdaNCDmb(yj, α, δ,S2,g(yj))
7: if v⊺

jHS2(yj)vj > −ε2/2 and ∥g(yj)∥ ≤ ε1
then

8: return yj
9: end if

10: end for

Deterministic Objective With probability at least 1−δ, the Algorithm AdaNCG+

returns a vector x̂k such that ∥∇f(x̂k)∥ ≤ ε1 and λmin(∇2f(x̂k)) ≥ −ε2 with at

most O (1
ε3

2
+ 1
ε1ε2

) AdaNCD steps in AdaNCG and Õ [(1
ε

7/2
2
+ 1
ε1ε

3/2
2
) + ε

1/2
2
ε2

1
] gradient

steps in Almost-Convex-AGD, and each step j within AdaNCG+ requires time
of Tn(f,max(ε2, ∥∇f(xj)∥2/3)1/2, δ′, d), and the worse-case time complexity of

AdaNCG+ is Õ ((d

ε1ε
3/2
2
+ d

ε
7/2
2
) + dε

1/2
2
ε2

1
) when using the Lanczos method for NCS.

Stochastic Objective Suppose ∣S ∣ = Õ(max(1/ε2
1, 1/(ε

9/2
2 b1/2))), ∣S1∣ = Õ(1/ε2

1)
and ∣S2∣ = Õ(1/ε2

2). With high probability, the Algorithm AdaNCD-SCSG returns
a vector yj such that ∥∇f(yj)∥ ≤ 2ε1 and λmin(∇2f(xj)) ≥ −2ε2 with at most

Õ (b1/3

ε
4/3
1
+ 1
ε3

2
) calls of SCSG-Epoch and AdaNCDmb. When ε1 = ε, ε2 =

√
ε, then by

choosing b = 1√
ε
, the complexity is Õ(d

ε3.5).

Experimental Results

0 200 400 600 800 1000 1200 1400

Number of oracle calls

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

o
b
je

c
ti
v
e

NCD-AG

AdaNCG
+

NCG

AdaNCG

0 0.5 1 1.5 2 2.5 3

Number of oracle calls ×10
4

0.23

0.235

0.24

0.245

0.25

O
b
je

c
ti
v
e

NCD-AG

AdaNCG
+

NCG

AdaNCG

0 2 4 6 8 10

Number of oracle calls ×10
4

1

1.5

2

2.5

3

3.5

4

4.5

5

O
b
je

c
ti
v
e

NCD-AG

AdaNCG
+

NCG

AdaNCG

Number of oracle calls ×10
4

0 2 4 6 8

O
b
je

c
ti
v
e

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

AdaNCD-SCSG
NCD-SCSG
S-AdaNCG

Number of oracle calls ×10
4

0 0.5 1 1.5 2 2.5 3 3.5

O
b
je

c
ti
v
e

0.232

0.234

0.236

0.238

0.24

0.242

0.244

0.246

0.248

0.25

AdaNCD-SCSG
NCD-SCSG
S-AdaNCG

Number of oracle calls ×10
5

0 1 2 3 4 5

O
b
je

c
ti
v
e

1

1.5

2

2.5

3

3.5

4

4.5

5

AdaNCD-SCSG
NCD-SCSG
S-AdaNCG

Figure: Comparison of deterministic algorithms (upper) and stochastic algorithms (lower) for
solving cubic regularization, regularized nonlinear least square, and NN (from left to right).

