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Abstract

Recent studies have shown that proximal gradient (PG) method and accelerated
gradient method (APG) with restarting can enjoy a linear convergence under a
weaker condition than strong convexity, namely a quadratic growth condition
(QGC). However, the faster convergence of restarting APG method relies on
the potentially unknown constant in QGC to appropriately restart APG, which
restricts its applicability. We address this issue by developing a novel adaptive
gradient converging methods, i.e., leveraging the magnitude of proximal gradient
as a criterion for restart and termination. Our analysis extends to a much more
general condition beyond the QGC, namely the Hölderian error bound (HEB)
condition. The key technique for our development is a novel synthesis of adaptive
regularization and a conditional restarting scheme, which extends previous work
focusing on strongly convex problems to a much broader family of problems.
Furthermore, we demonstrate that our results have important implication and
applications in machine learning: (i) if the objective function is coercive and semi-
algebraic, PG’s convergence speed is essentially o( 1

t ), where t is the total number
of iterations; (ii) if the objective function consists of an `1, `∞, `1,∞, or huber
norm regularization and a convex smooth piecewise quadratic loss (e.g., square
loss, squared hinge loss and huber loss), the proposed algorithm is parameter-free
and enjoys a faster linear convergence than PG without any other assumptions
(e.g., restricted eigen-value condition). It is notable that our linear convergence
results for the aforementioned problems are global instead of local. To the best of
our knowledge, these improved results are first shown in this work.

1 Introduction

We consider the following smooth composite optimization:

min
x∈Rd

F (x) , f(x) + g(x), (1)

where g(x) is a proper lower semi-continuous convex function and f(x) is a continuously dif-
ferentiable convex function, whose gradient is L-Lipschitz continuous. The above problem has
been studied extensively in literature and many algorithms have been developed with convergence
guarantee. In particular, by employing the proximal mapping associated with g(x), i.e.,

Pηg(u) = arg min
x∈Rd

1

2
‖x− u‖22 + ηg(x), (2)

proximal gradient (PG) and accelerated proximal gradient (APG) methods have been developed
for solving (1) with O(1/ε) and O(1/

√
ε) 1 iteration complexities for finding an ε-optimal solution.

1For the moment, we neglect the constant factor.
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Table 1: Summary of iteration complexities in this work under the HEB condition with θ ∈ (0, 1/2],
where G(x) denotes the proximal gradient, C(1/εα) = max(1/εα, log(1/ε)) and Õ(·) suppresses
a logarithmic term. If θ > 1/2, all algorithms can converge with finite steps of proximal mapping.
rAPG stands for restarting APG. ∗ mark results available for certain subclasses of problems.

algo. PG rAPG adaAGC

F (x)− F∗ ≤ ε O
(
c2LC

(
1

ε1−2θ

))
O
(
c
√
LC
(

1

ε1/2−θ

))
*

‖G(x)‖2 ≤ ε O

(
c

1
1−θLC

(
1

ε
1−2θ
1−θ

))
– Õ

(
c

1
2(1−θ)

√
LC
(

1

ε
1−2θ

2(1−θ)

))
requires θ No Yes Yes

requires c No Yes No

When either f(x) or g(x) is strongly convex, both PG and APG can enjoy a linear convergence, i.e.,
the iteration complexity is improved to be O(log(1/ε)).

Recently, a wave of studies try to generalize the linear convergence to problems without strong
convexity but under certain structured condition of the objective function or more generally a
quadratic growth condition [8, 32, 21, 23, 7, 31, 3, 15, 9, 29, 4, 24, 26, 25]. Earlier work along the
line dates back to [12, 13, 14]. An example of the structured condition is such that f(x) = h(Ax)
where h(·) is strongly convex function and ∇h(x) is Lipschitz continuous on any compact set, and
g(x) is a polyhedral function. Under such a structured condition, a local error bound condition can
be established [12, 13, 14], which renders an asymptotic (local) linear convergence for the proximal
gradient method. A quadratic growth condition (QGC) prescribes that the objective function satisfies
for any x ∈ Rd 2: α

2 ‖x − x∗‖22 ≤ F (x) − F (x∗), where x∗ denotes a closest point to x in the
optimal set. Under such a quadratic growth condition, several recent studies have established the
linear convergence of PG, APG and many other algorithms (e.g., coordinate descent methods) [3,
15, 4, 9, 29]. A notable result is that PG enjoys an iteration complexity of O(Lα log(1/ε)) without
knowing the value of α, while a restarting version of APG studied in [15] enjoys an improved iteration

complexity of O(
√

L
α log(1/ε)) hinging on the value of α to appropriately restart APG periodically.

Other equivalent conditions or more restricted conditions are also considered in several studies to
show the linear convergence of (proximal) gradient method and other methods [9, 15, 29, 30].

In this paper, we extend this line of work to a more general error bound condition, i.e., the Hölderian
error bound (HEB) condition on a compact sublevel set Sξ = {x ∈ Rd : F (x)− F (x∗) ≤ ξ}: there
exists θ ∈ (0, 1] and 0 < c <∞ such that

‖x− x∗‖2 ≤ c(F (x)− F (x∗))
θ, ∀x ∈ Sξ. (3)

Note that when θ = 1/2 and c =
√

1/α, the HEB reduces to the QGC. In the sequel, we will refer to
C = Lc2 as condition number of the problem. It is worth mentioning that Bolte et al. [3] considered
the same condition or an equivalent Kurdyka - Łojasiewicz inequality but they only focused on
descent methods that bear a sufficient decrease condition for each update consequentially excluding
APG. In addition, they do not provide explicit iteration complexity under the general HEB condition.

As a warm-up and motivation, we will first present a straightforward analysis to show that PG
is automatically adaptive and APG can be made adaptive to the HEB by restarting. In par-
ticular if F (x) satisfies a HEB condition on the initial sublevel set, PG has an iteration com-
plexity of O(max( C

ε1−2θ , C log( 1
ε ))) 3, and restarting APG enjoys an iteration complexity of

O(max(
√
C

ε1/2−θ
,
√
C log( 1

ε ))) for the convergence of objective value, where C = Lc2 is the condition
number. These two results resemble but generalize recent works that establish linear convergence of
PG and restarting APG under the QGC - a special case of HEB. Although enjoying faster convergence,
restarting APG has a critical caveat: it requires the knowledge of constant c in HEB to restart APG,
which is usually difficult to compute or estimate. In this paper, we make nontrivial contributions to

2It can be relaxed to a fixed domain as done in this work.
3When θ > 1/2, all algorithms can converge in finite steps.
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obtain faster convergence of the proximal gradient’s norm under the HEB condition by developing an
adaptive accelerated gradient converging method.

The main results of this paper are summarized in Table 1. The contributions of this paper are: (i)
we extend the analysis of PG and restarting APG under the quadratic growth condition to more
general HEB condition, and establish the adaptive iteration complexities of both algorithms; (ii)
to enjoy faster convergence of restarting APG and to eliminate the algorithmic dependence on
the unknown parameter c, we propose and analyze an adaptive accelerated gradient converging
(adaAGC) method. The developed algorithms and theory have important implication and applications
in machine learning. Firstly, if the considered objective function is also coercive and semi-algebraic
(e.g., a norm regularized problem in machine learning with a semi-algebraic loss function), then PG’s
convergence speed is essentially o(1/t) instead of O(1/t), where t is the total number of iterations.
Secondly, for solving `1, `∞ or `1,∞ regularized smooth loss minimization problems including
least-squares loss, squared hinge loss and huber loss, the proposed adaAGC method enjoys a linear
convergence and a square root dependence on the “condition" number. In contrast to previous work,
the proposed algorithm is parameter free and does not rely on any restricted conditions (e.g., the
restricted eigen-value conditions).

2 Notations and Preliminaries

In this section, we present some notations and preliminaries. In the sequel, we let ‖·‖p (p ≥ 1) denote
the p-norm of a vector. A function g(x) : Rd → (−∞,∞] is a proper function if g(x) < +∞ for at
least one x. g(x) is lower semi-continuous at a point x0 if lim infx→x0

g(x) = g(x0). A function
F (x) is coercive if and only if F (x)→∞ as ‖x‖2 →∞. We will also refer to semi-algebraic set and
semi-algebraic function several times in the paper, which are standard concepts in mathematics [2].
Due to limit of space, we present the definitions in the supplement.

Denote by N the set of all positive integers. A function h(x) is a real polynomial if there exists
r ∈ N such that h(x) =

∑
0≤|α|≤r λαx

α, where λα ∈ R and xα = xα1
1 . . . xαdd , αj ∈ N ∪ {0},

|α| =
∑d
j=1 αj and r is referred to as the degree of h(x). A continuous function f(x) is said to be a

piecewise convex polynomial if there exist finitely many polyhedra P1, . . . , Pk with ∪kj=1Pj = Rn
such that the restriction of f on each Pj is a convex polynomial. Let fj be the restriction of f on Pj .
The degree of a piecewise convex polynomial function f denoted by deg(f) is the maximum of the
degree of each fj . If deg(f) = 2, the function is referred to as a piecewise convex quadratic function.
Note that a piecewise convex polynomial function is not necessarily a convex function [10].

A function f(x) is L-smooth w.r.t ‖ · ‖2 if it is differentiable and has a Lipschitz continuous gradient
with the Lipschitz constant L, i.e., ‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2,∀x,y. Let ∂g(x) denote the
subdifferential of g at x. Denote by ‖∂g(x)‖2 = minu∈∂g(x) ‖u‖2. A function g(x) is α-strongly
convex w.r.t ‖ · ‖2 if it satisfies for any u ∈ ∂g(y) such that g(x) ≥ g(y) + u>(x − y) + α

2 ‖x −
y‖22,∀x,y.

Denote by η > 0 a positive scalar, and let Pηg be the proximal mapping associated with ηg(·) defined
in (2). Given an objective function F (x) = f(x) + g(x), where f(x) is L-smooth and convex, g(x)
is a simple non-smooth function which is closed and convex, define a proximal gradient Gη(x) as:

Gη(x) =
1

η
(x− x+

η ), where x+
η = Pηg(x− η∇f(x)).

When g(x) = 0, we haveGη(x) = ∇f(x), i.e., the proximal gradient is the gradient. It is known that
x is an optimal solution iff Gη(x) = 0. If η = 1/L, for simplicity we denote by G(x) = G1/L(x)

and x+ = Pg/L(x−∇f(x)/L). Let F∗ denote the optimal objective value to minx∈Rd F (x) and
Ω∗ denote the optimal set. Denote by Sξ = {x : F (x)− F∗ ≤ ξ} the ξ-sublevel set of F (x). Let
D(x,Ω) = miny∈Ω ‖x− y‖2.

The proximal gradient (PG) method solves the problem (1) by the update
xt+1 = Pηg(xt − η∇f(xt)), (4)

with η ≤ 1/L starting from some initial solution x1 ∈ Rd. It can be shown that PG has an iteration
complexity of O(LD(x1,Ω∗)2

ε ). Nevertheless, accelerated proximal gradient (APG) converges faster
than PG. There are many variants of APG in literature [22] including the well-known FISTA [1]. The
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Algorithm 1: ADG
x0 ∈ Ω, A0 = 0, v0 = x0

for t = 0, . . . , T do
Find at+1 from quadratic equation a2

At+a
= 2 1+αAt

L

Set At+1 = At + at+1

Set yt = At
At+1

xt + at+1

At+1
vt

Compute xt+1 = Pg/L(yt −∇f(yt)/L)

Compute vt+1 = arg minx

∑t+1
τ=1 aτ∇f(xτ )>x +At+1g(x) + 1

2‖x− x0‖22

simplest variant adopts the following update
yt = xt + βt(xt − xt−1), xt+1 = Pηg(yt − η∇f(yt)),

where η ≤ 1/L and βt is an appropriate sequence (e.g. βt = t−1
t+2 ). APG enjoys an iteration

complexity of O(
√
LD(x1,Ω∗)√

ε
) [22]. Furthermore, if f(x) is both L-smooth and α-strongly convex,

one can set βt =
√
L−
√
α√

L+
√
α

and deduce a linear convergence [16, 11] with a better dependence on the
condition number than that of PG. If g(x) is α-strongly convex and f(x) is L-smooth, Nesterov [17]
proposed a different variant based on dual averaging, which is referred to accelerated dual gradient
(ADG) method and will be useful for our development. The key steps are presented in Algorithm 1.

2.1 Hölderian error bound (HEB) condition

Definition 1 (Hölderian error bound (HEB)). A function F (x) is said to satisfy a HEB condition on
the ξ-sublevel set if there exist θ ∈ (0, 1] and 0 < c <∞ such that for any x ∈ Sξ

dist(x,Ω∗) ≤ c(F (x)− F∗)θ. (5)

The HEB condition is closely related to the Łojasiewicz inequality or more generally Kurdyka-
Łojasiewicz (KL) inequality in real algebraic geometry. It has been shown that when functions are
semi-algebraic and continuous, the above inequality is known to hold on any compact set [3]. We
refer the readers to [3] for more discussions on HEB and KL inequalities.

In the remainder of this section, we will review some previous results to demonstrate that HEB is a
generic condition that holds for a broad family of problems of interest. The following proposition
states that any proper, coercive, convex, lower-semicontinuous and semi-algebraic functions satisfy
the HEB condition.

Proposition 1. [3] Let F (x) be a proper, coercive, convex, lower semicontinuous and semi-algebraic
function. Then there exists θ ∈ (0, 1] and 0 < c < ∞ such that F (x) satisfies the HEB on any
ξ-sublevel set.

Example: Most optimization problems in machine learning with an objective that consists of an
empirical loss that is semi-algebraic (e.g., hinge loss, squared hinge loss, absolute loss, square loss)
and a norm regularization ‖ · ‖p (p ≥ 1 is a rational) or a norm constraint are proper, coercive, lower
semicontinuous and semi-algebraic functions.

Next two propositions exhibit the value θ for piecewise convex quadratic functions and piecewise
convex polynomial functions.

Proposition 2. [10] Let F (x) be a piecewise convex quadratic function on Rd. Suppose F (x) is
convex. Then for any ξ > 0, there exists 0 < c <∞ such that D(x,Ω∗) ≤ c(F (x)− F∗)1/2,∀x ∈
Sξ.

Many problems in machine learning are piecewise convex quadratic functions, which will be discussed
more in Section 5.

Proposition 3. [10] Let F (x) be a piecewise convex polynomial function on Rd. Suppose
F (x) is convex. Then for any ξ > 0, there exists c > 0 such that D(x,Ω∗) ≤ c(F (x) −
F∗)

1

(deg(F )−1)d+1 ,∀x ∈ Sξ.
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Algorithm 2: restarting APG (rAPG)
Input: the number of stages K and x0 ∈ Ω
for k = 1, . . . ,K do

Set yk1 = xk−1 and xk1 = xk−1

for τ = 1, . . . , tk do
Update xkτ+1 = Pg/L(ykτ −∇f(ykτ )/L)

Update ykτ+1 = xkτ+1 + τ
τ+3 (xkτ+1 − xkτ )

Let xk = xktk+1 and update tk
Output: xK

Indeed, for a polyhedral constrained convex polynomial, we can have a tighter result, as shown below.
Proposition 4. [27] Let F (x) be a convex polynomial function on Rd with degree m. If P ⊂ Rd is
a polyhedral set, then the problem minx∈P F (x) admits a global error bound: ∀x ∈ P there exists
0 < c <∞ such that

D(x,Ω∗) ≤ c
[
(F (x)− F∗) + (F (x)− F∗)

1
m

]
. (6)

From the global error bound (6), one can easily derive the HEB condition (3). As an example, an `1
constrained `p norm regression below [19] satisfies the HEB condition (3) with θ = 1

p :

min
‖x‖1≤s

F (x) ,
1

n

n∑
i=1

(a>i x− bi)p, p ∈ 2N. (7)

Many previous papers have considered a family of structured smooth composite functions F (x) =
h(Ax)+g(x), where g(x) is a polyhedral function and h(·) is a smooth and strongly convex function
on any compact set. Suppose the optimal set of the above problem is non-empty and compact (e.g.,
the function is coercive) so is the sublevel set Sξ , and it can been shown that such a function satisfies
HEB with θ = 1/2 on any sublevel set Sξ [15, Theorem 10]. Examples of h(u) include logistic loss
h(u) =

∑
i log(1 + exp(−ui)) and square loss h(u) = ‖u‖22.

Finally, we note that there exist problems that admit HEB with θ > 1/2. A trivial example is given by
F (x) = 1

2‖x‖
2
2 +‖x‖pp with p ∈ [1, 2), which satisfies HEB with θ = 1/p ∈ (1/2, 1]. An interesting

non-trivial family of problems is that f(x) = 0 and g(x) is a piece-wise linear functions according
to Proposition 3. PG or APG applied to such family of problems is closely related to proximal point
algorithm [20]. Explorations of such algorithmic connection is not the focus of this paper.

3 PG and restarting APG under HEB

As a warm-up and motivation of the major contribution presented in next section, we present a
convergence result of PG and a restarting APG under the HEB condition. The analysis is mostly
straightforward and is included in the supplement. We first present a result of PG using the update (4).
Theorem 1. Suppose F (x0) − F∗ ≤ ε0 and F (x) satisfies HEB on Sε0 . The iteration complexity
of PG with option I (which returns the last solution, see the supplementary material) for achieving
F (xt)− F∗ ≤ ε is O(c2Lε2θ−1

0 ) if θ > 1/2, and is O(max{ c2L
ε1−2θ , c

2L log( ε0ε )}) if θ ≤ 1/2.

Next, we show that APG can be made adaptive to HEB by periodically restarting given c and θ. This
is similar to [15] under the QGC. The steps of restarting APG (rAPG) are presented in Algorithm 2,
where we employ the simplest variant of APG.
Theorem 2. Suppose F (x0) − F∗ ≤ ε0 and F (x) satisfies HEB on Sε0 . By running Algorithm 2
with K = dlog2

ε0
ε e and tk = d2c

√
Lε

θ−1/2
k−1 e, we have F (xK)− F∗ ≤ ε. The iteration complexity

of rAPG is O(c
√
Lε

1/2−θ
0 ) if θ > 1/2, and if θ ≤ 1/2 it is O(max{ c

√
L

ε1/2−θ
, c
√
L log( ε0ε )}).

From Algorithm 2, we can see that rAPG requires the knowledge of c besides θ to restart APG.
However, for many problems of interest, the value of c is unknown, which makes rAPG impractical.
To address this issue, we propose to use the magnitude of the proximal gradient as a measure for
restart and termination. It is worth mentioning the difference between the development in this
paper and previous studies. Previous work [16, 11] have considered strongly convex optimization

5



problems where the strong convexity parameter is unknown, where they also use the magnitude of
the proximal gradient as a measure for restart and termination. However, in order to achieve faster
convergence under the HEB condition without the strong convexity, we have to introduce a novel
technique of adaptive regularization that adapts to the HEB. With a novel synthesis of the adaptive
regularization and a conditional restarting that searchs for the c, we are able to develop practical
adaptive accelerated gradient methods. We also notice a recent work [6] that proposed unconditional
restarted accelerated gradient methods under QGC. Their restart of APG/FISTA does not involve
evaluation of the gradient or the objective value but rather depends on a restarting frequency parameter
and a convex combination parameter for computing the restarting solution, which can be set based on
a rough estimate of the strong convexity parameter. As a result, their linear convergence (established
for distance of solutions to the optimal set) heavily depends on the rough estimate of the strong
convexity parameter.

Before diving into the details of the proposed algorithm, we will first present a variant of PG as a
baseline for comparison motivated by [18] for smooth problems, which enjoys a faster convergence
than the vanilla PG in terms of the proximal gradient’s norm. The idea is to return a solution
that achieves the minimum magnitude of the proximal gradient, i.e., min1≤τ≤t ‖G(xτ )‖2. The
convergence of min1≤τ≤t ‖G(xτ )‖2 under HEB is presented in the following theorem.

Theorem 3. Suppose F (x0)− F∗ ≤ ε0 and F (x) satisfies HEB on Sε0 . The iteration complexity of
PG (option II, which returns the solution with historically minimal proximal gradient, see the supple-
mentary material) for achieving min1≤τ≤t ‖G(xτ )‖2 ≤ ε, is O(c

1
1−θLmax{1/ε

1−2θ
1−θ , log( ε0ε )}) if

θ ≤ 1/2, and is O(c2Lε2θ−1
0 ) if θ > 1/2.

The final theorem in this section summarizes an o(1/t) convergence result of PG for minimizing
a proper, coercive, convex, lower semicontinuous and semi-algebraic function, which could be
interesting of its own.

Theorem 4. Let F (x) be a proper, coercive, convex, lower semicontinuous and semi-algebraic
functions. Then PG (with option I and option II) converges at a speed of o(1/t) for F (x)− F∗ and
G(x), respectively, where t is the total number of iterations.

Remark: This can be easily proved by combining Proposition 1 and Theorems 1, 3.

4 Adaptive Accelerated Gradient Converging Methods

We first present a key lemma for our development that serves the foundation of the adaptive regular-
ization and conditional restarting.

Lemma 1. Assume F (x) satisfies HEB for any x ∈ Sξ with θ ∈ (0, 1]. If θ ∈ (0, 1/2], then for

any x ∈ Sξ, we have D(x,Ω∗) ≤ 2
L‖G(x)‖2 + c

1
1−θ 2

θ
1−θ ‖G(x)‖

θ
1−θ
2 . If θ ∈ (1/2, 1], then for any

x ∈ Sξ, we have D(x,Ω∗) ≤
(

2
L + 2c2ξ2θ−1

)
‖G(x)‖2.

A building block of the proposed algorithm is to solve a problem of the following style by employing
the Algorithm 1 (i.e., Nesterov’s ADG):

Fδ(x) = F (x) +
δ

2
‖x− x0‖22 = f(x) + g(x) +

δ

2
‖x− x0‖22, (8)

which consists of a L-smooth function f(x) and a δ-strongly convex function gδ(x) = g(x) + δ
2‖x−

x0‖22. A key result for our development of conditional restarting is the following theorem for each
call of Algorithm 1 for solving the above problem.

Theorem 5. By running the Algorithm 1 for minimizing f(x) + gδ(x) with an initial solution x0,

for t ≥
√

L
2δ log

(
L
δ

)
we have

‖G(xt+1)‖2 ≤
√
L(L+ δ)‖x0 − x∗‖2

[
1 +

√
δ/(2L)

]−t
+ 2
√

2δ‖x0 − x∗‖2.

where x∗ is any optimal solution to the original problem.

Finally, we present the proposed adaptive accelerated gradient converging (adaAGC) method for
solving the smooth composite optimization in Algorithm 3 and prove the main theorem of this section.
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Algorithm 3: adaAGC for solving (1)
Input: x0 ∈ Ω and c0 and γ > 1
Let ce = c0 and ε0 = ‖G(x0)‖2
for k = 1, . . . ,K do

for s = 1, . . . , do
Let δk be given in (9) and gδk(x) = g(x) + δk

2 ‖x− xk−1‖22
A0 = 0, v0 = xk−1, xk0 = xk−1

for t = 0, . . . do
Let at+1 be the root of a2

At+a
= 2 1+δkAt

L

Set At+1 = At + at+1

Set yt = At
At+1

xkt + at+1

At+1
vt

Compute xkt+1 = Pgδk/L(yt −∇f(yt)/L)

Compute vt+1 = arg minx
1
2‖x− xk−1‖22 +

∑t+1
τ=1 aτ∇f(xkτ )>x +At+1gδk(x)

if ‖G(xkt+1)‖2 ≤ εk−1/2 then
let xk = xkt+1 and εk = εk−1/2 // step S1
break the enclosing two for loops

if τ = d
√

2L
δk

log

√
L(L+δk)

δk
e then // condition (*)

let ce = γce and break the enclosing for loop // step S2

Output: xK

The adaAGC runs with multiple stages (k = 1, . . . ,K). We start with an initial guess c0 of the
parameter c in the HEB. With the current guess ce of c, at the k-th stage adaAGC employs ADG to
solve a problem of (8) with an adaptive regularization parameter δk being

δk =


min

(
L
32 ,

ε
1−2θ
1−θ
k−1

16c
1/(1−θ)
e 2

θ
1−θ

)
if θ ∈ (0, 1/2]

min
(
L
32 ,

1

32c2eε
2θ−1
0

)
if θ ∈ (1/2, 1]

(9)

The condition (*) specifies the condition for restarting with an increased value of ce. When the flow
enters step S2 before step S1 for each s, it means that the current guess ce is not sufficiently large
according to Theorem 5 and Lemma 1, then we increase ce and repeat the same process (next iteration
for s). We refer to this machinery as conditional restarting. We present the main result of this section
in the following theorem.

Theorem 6. Suppose F (x0)−F∗ ≤ ε0, F (x) satisfies HEB on Sε0 and c0 ≤ c. Let ε0 = ‖G(x0)‖2,
K = dlog2( ε0ε )e, p = (1− 2θ)/(1− θ) for θ ∈ (0, 1/2]. The iteration complexity of Algorithm 3 for

having ‖G(xK)‖2 ≤ ε is Õ
(√

Lc
1

2(1−θ) max( 1
εp/2

, log(ε0/ε)
)

if θ ∈ (0, 1/2], and Õ(
√
Lcε

θ−1/2
0 )

if θ ∈ (1/2, 1], where Õ(·) suppresses a log term depending on c, c0, L, γ.

We sketch the idea of the proof here: for each k, we can bound the number of cycles (indexd by s in the
algorithm) in order to enter step S1 denoted by sk. We can bound sk ≤ logγ(c/c0) + 1 and then total

number of iterations across all stages is bounded by
∑K
k=1 sktk where tk = d

√
2L
δk

log

√
L(L+δk)

δk
e.

Before ending this section, we would like to remark that if the smoothness parameter L is unknown,
one can also employ the backtracking technique pairing with each update to search for L [17].

4.1 Convergence of Objective Gap

In this subsection, we show that the convergence of the proximal gradient also implies the convergence
of the objective gap F (x)−F∗ for certain subclasses of the general problems that we have considered.
Our first result applies to the case when F (x) satisfies the HEB with θ ∈ (0, 1) and the nonsmooth
part g(x) is absent, i.e., F (x) = f(x). In this case, we can establish the convergence of the
objective gap, since the objective gap can be bounded by a function of the magnitude of gradient,
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i.e., f(x)− f∗ ≤ c1/(1−θ)‖∇f(x)‖1/(1−θ)2 (c.f. the proof of Lemma 2 in the supplement). One can
easily prove the following result.

Theorem 7. Assume F (x) = f(x) and the same conditions in Theorem 6 hold. The iteration

complexity of Algorithm 3 for having F (xK) − F (x∗) ≤ ε is Õ
(√

Lcmax( 1
ε1/2−θ

, log(ε0/ε)
)

if

θ ∈ (0, 1/2], and Õ(
√
Lcε

θ−1/2
0 ) if θ ∈ (1/2, 1), where Õ(·) suppresses a log term depending on

c, c0, L, γ.
Remark Note that the above iteration complexity of adaAGC is the same as that of rAPG (shown in
Table 1), where the later is established under the knowledge of c.

Our second result applies to a subclass of the general problems where either g(x) or f(x) is µ-strongly
convex or F (x) = f(x) + g(x), where f(x) = h(Ax) with h(·) being a strongly convex function
and g(x) is the indicator function of a polyhedral set Ω = {x : Cx ≤ b}. Examples include square
loss minimization under an `1 or `∞ constraint [15, Theorem 8]. It has been shown that in the last
case, for any x ∈ dom(F ), there exists µ > 0 such that

f(x∗) ≥ f(x) +∇f(x)>(x∗ − x) +
µ

2
‖x− x∗‖22, (10)

where x∗ is the closest optimal solution to x, and the HEB condition of F (x) with θ = 1/2 and
c =

√
2/µ holds [15, Theorem 1]. In the three cases mentioned above, we can establish that

F (x+)− F∗ ≤ O(1/µ)‖G(x)‖22, where x+ = Pg/L(x−∇f(x)/L), and the following result.

Theorem 8. Assume f(x) or g(x) is µ-strongly convex, or f(x) = h(Ax) and g(x) is the in-
dicator function of a polyhedral set such that (10) holds for some µ > 0, and other conditions
in Theorem 6 hold. The iteration complexity of Algorithm 3 for having F (x+

K) − F (x∗) ≤ ε is

Õ
(√

L/µ log(ε0/
√
µε)
)

, where Õ(·) suppresses a log term depending on µ, c0, L, γ.

5 Applications and Experiments

In this section, we present some applications of our theorems and algorithms in machine learning. In
particular, we consider the regularized problems with a smooth loss:

min
x∈Rd

1

n

n∑
i=1

`(x>ai, bi) + λR(x), (11)

where (ai, bi), i = 1, . . . , n denote a set of training examples, R(x) could be the `1 norm ‖x‖1, the
`∞ norm ‖x‖∞, or a huber norm [28], or the `1,p norm

∑K
k=1 ‖xk‖p, where k is the k-th component

vector of x. Next, we present several results about the HEB condition to cover a broad family of loss
functions that enjoy the faster convergence of adaAGC.

Corollary 1. Assume the loss function `(z, b) is nonnegative, convex, smooth and piecewise quadratic,
then the problems in (11) with `1 norm, `∞ norm, Huber norm and `1,∞ norm regularization satisfy
the HEB condition with θ = 1/2 on any sublevel set Sξ with ξ > 0. Hence adaAGC has a global
linear convergence in terms of the proximal gradient’s norm and a square root dependence on the
condition number.

Remark: The above corollary follows directly from Proposition 2 and Theorem 6. If the loss function
is a logistic loss and the regularizer is a polyhedral function (e.g., `1, `∞ and `1,∞ norm), we can
prove the same result. Examples of convex, smooth and piecewise convex quadratic loss functions
include: square loss: `(z, b) = (z − b)2 for b ∈ R; squared hinge loss: `(z, b) = max(0, 1 − bz)2

for b ∈ {1,−1}; and huber loss: `(z, b) = ρ(|z − b| − ρ
2 ) if |z − b| > ρ, and `(z, b) = (z − b)2/2 if

|z − b| ≤ ρ, for b ∈ R.

Experimental Results We conduct some experiments to demonstrate the effectiveness of adaAGC
for solving problems of type (1). Specifically, we compare adaAGC, PG with option II that returns
the solution with historically minimal proximal gradient, FISTA, unconditional restarting FISTA
(urFISTA) [6] for optimizing the squared hinge loss (classification), square loss (regression), huber
loss (with ρ = 1) (regression) with `1 and `∞ regularization, which are cases of (11), and we also
consider the `1 constrained `p norm regression (7) with varying p. We use three datasets from
the LibSVM website [5], which are splice (n = 1000, d = 60) for classification, and bodyfat
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Table 2: squared hinge loss with `1 norm (left) and `∞ norm (right) regularization on splice data

Algorithm ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7 ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7

PG 2040 2040 2040 2040 3514 3724 3724 3724
FISTA 1289 1289 1289 1289 5526 5526 5526 5526

urFISTA 1666 2371 2601 3480 1674 2379 2605 3488
adaAGC 1410 1410 1410 1410 2382 2382 2382 2382

FISTA > adaAGC > PG > urFISTA adaAGC > urFISTA > PG > FISTA

Table 3: square loss with `1 norm (left) and `∞ norm (right) regularization on cpusmall data

Algorithm ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7 ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7

PG 109298 159908 170915 170915 139505 204120 210874 210874
FISTA 6781 16387 23779 23779 6610 16418 20082 20082

urFISTA 18278 26706 35173 43603 18276 26704 35169 43601
adaAGC 9571 12623 13575 13575 9881 13033 13632 13632

adaAGC > FISTA > urFISTA > PG adaAGC > FISTA > urFISTA > PG

Table 4: `1 regularized huber loss (left) and `1 constrained square loss (right) on bodyfat data

Algorithm ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7 ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7

PG 258723 423181 602043 681488 1006880 1768482 2530085 2632578
FISTA 6630 25020 74416 124261 15805 66319 180977 181176

urFISTA 6855 12662 17994 23933 138359 235081 331203 426341
adaAGC 16976 16980 23844 25697 23054 33818 44582 48127

urFISTA > adaAGC > FISTA > PG adaAGC> FISTA > urFISTA > PG

Table 5: `1 constrained `p norm regression on bodyfat data (ε = 10−3)

Algorithm p = 2 p = 4 p = 6 p = 8
PG 250869 (1) 979401 (3.90) 1559753 (6.22) 4015665 (16.00)

adaAGC 8710 (1) 17494 (2.0) 22481 (2.58) 33081 (3.80)
(n = 252, d = 14), cpusmall (n = 8192, d = 12) for regression. For problems covered by (11), we
fix λ = 1

n , and the parameter s in (7) is set to s = 100.

We use the backtracking in PG, adaAGC and FISTA to search for the smoothness parameter. In
adaAGC, we set c0 = 2, γ = 2 for the `1 constrained `p norm regression and c0 = 10, γ = 2 for the
rest problems. For fairness, for urFISTA and adaAGC, we use the same initial estimate of unknown
parameter (i.e., c). Each algorithm starts at the same initial point, which is set to be zero, and we stop
each algorithm when the norm of its proximal gradient is less than a prescribed threshold ε and report
the total number of proximal mappings. The results are presented in the Tables 2–5. It indicates
that adaAGC converges faster than PG and FISTA (except for solving squared hinge loss with `1
norm regularization) when ε is very small, which is consistent with the theoretical results. Note that
urFISTA sometimes has better performance than adaAGC but is worse than adaAGC in most cases. It
is notable that for some problems (see Table 2) the number of proximal mappings is the same value
for achieving different precision ε. This is because that value is the minimum number of proximal
mappings such that the magnitude of the proximal gradient suddenly becomes zero. In Table 5, the
numbers in parenthesis indicate the increasing factor in the number of proximal mappings compared
to the base case p = 2, which show that increasing factors of adaAGC are approximately the square
root of that of PG and thus are consistent with our theory.

6 Conclusions
In this paper, we have considered smooth composite optimization problems under a general Hölderian
error bound condition. We have established adaptive iteration complexity to the Hölderian error
bound condition of proximal gradient and accelerated proximal gradient methods. To eliminate the
dependence on the unknown parameter in the error bound condition and enjoy the faster convergence
of accelerated proximal gradient method, we have developed a novel parameter-free adaptive ac-
celerated gradient converging method using the magnitude of the (proximal) gradient as a measure
for restart and termination. We have also considered a broad family of norm regularized problems
in machine learning and showed faster convergence of the proposed adaptive accelerated gradient
converging method.
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