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Background

• Alternating direction method of multipliers (ADMM) has received tremendous interest
for solving numerous problems in machine learning, statistics and signal processing.

• The performance of ADMM and many of its variants is very sensitive to the penalty
parameter of a quadratic penalty applied to the equality constraints.

• Although several approaches have been proposed for dynamically changing this
parameter, they do not yield theoretical improvement in the convergence rate and are
not directly applicable to stochastic ADMM.

Structured Non-smooth and Non-strongly Convex Problem

The optimization problem of interest:

min
x∈Ω

F (x) ≜ f(x) + ψ(Ax) (1)

where Ω ⊆ Rd is a closed convex set, f ∶ Rd → R and ψ ∶ Rm → R are proper lower-
semicontinuous convex functions, and A ∈ Rm×d is a matrix. To apply ADMM, the
problem (1) can be cast into the following equivalent constrained optimization problems.

• The optimization problem in deterministic setting:
min

x∈Ω,y∈Rm
F (x) ≜ f(x) + ψ(y), s.t. y = Ax. (2)

• The optimization problem in stochastic setting:

min
x∈Ω,y∈Rm

F (x) ≜ Eξ[f(x; ξ)] + ψ(y), s.t. y = Ax. (3)

where ξ is a random variable.

Let Ω∗, F∗ denote the set of optimal solutions and the optimal value, respectively.

• We make the following assumptions:
a. There exist x0 ∈ Ω and ε0 ≥ 0 s.t. F (x0) − F∗ ≤ ε0;
b. Ω∗ is a non-empty convex compact set;
c. There exists ρ > 0 s.t. ∥∂ψ(y)∥2 ≤ ρ for all y;
d. ψ is defined everywhere;
e. There exists R > 0 s.t. ∥∂f(x; ξ)∥2 ≤ R almost surely for any x ∈ Ω (for stochastic
setting only) .

• The ε-sublevel set of F (x): Sε = {x ∈ Ω1 ∶ F (x) ≤ F∗ + ε}
• The distance of x to Ω∗: dist(x,Ω∗) = minz∈Ω∗ ∥z − x∥2

• The closest point on the Sε to x: x†
ε = arg minz∈Sε ∥z − x∥2
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Alternating Direction Method of Multipliers (ADMM)

An augmented Lagrangian function for (2):

L(x,y, λ) = f(x) + ψ(y) − λ⊺(Ax − y) + β
2
∥Ax − y∥2

2, (4)

where β: penalty parameter, λ ∈ Rm: dual variable.

(1) The standard ADMM solves problem (2) iteratively:

xτ+1 = arg min
x∈Ω

L(x,yτ , λτ) = arg min
x∈Ω

f(x) + β
2
∥(Ax − yτ) −

1
β
λτ∥

2

2
, (5)

yτ+1 = arg min
x∈Ω

L(xτ+1,y, λτ) = arg min
y∈Rm

ψ(y) + β
2
∥(Axτ+1 − y) − 1

β
λτ∥

2

2
, (6)

λτ+1 = λτ − β(Axτ+1 − yτ+1). (7)

• When A ≠ I , solving the subproblem (5) might be difficult. To alleviate the issue,
linearized ADMM solves the following problem instead of (5):

xτ+1 = arg min
x∈Ω

f(x) + β
2
∥(Ax − yτ) −

1
β
λτ∥

2

2
+ 1

2
∥x − xτ∥2

G, (8)

where ∥x∥G =
√

x⊺Gx and G ∈ Rd×d is a positive semi-definite matrix.
• By setting G = γI − βA⊺A ⪰ 0, the term x⊺A⊺Ax in (8) vanishes.

Algorithm 1 ADMM (x0, β, t)

1: Input: x0 ∈ Ω, β, t.
2: Initialize: x1 = x0,y1 = Ax1, λ1 = 0, γ = β∥A∥2

2 and G = γI − βA⊺A or G = 0.
3: for τ = 1, . . . , t do
4: Update xτ+1 by (8), yτ+1 by (6), λτ+1 by (7)
5: end for
6: Output: x̂t = ∑tτ=1 xτ/t

Lemma 1 [1]. By setting β = ρ√
2∥A∥2∥x∗−x0∥2

(β depends on unknown x∗), after
t = O(1/ε) iterations, ADMM ensures that

F (x̂t) − F (x∗) ≤ ε.

(2) The stochastic ADMM updates yτ+1 and λτ+1 the same to (6) and (7), but
updates xτ+1 as

xτ+1 = arg min
x∈Ω

f(xτ ; ξτ)+∂f(xτ ; ξτ)⊺(x−xτ)+
β

2
∥(Ax − yτ) −

1
β
λτ∥

2

2
+
∥x − xτ∥2

Gτ

ητ
(9)

where ητ is a stepsize and Gτ = γI − βητA⊺A ⪰ I or Gτ = I.

Algorithm 2 SADMM (x0, η, β, t,Ω )

1: Input: x0 ∈ Rd, η, β, t.
2: Initialize: x1 = x0,y1 = Ax1, λ1 = 0, Gτ = γI − ηβA⊺A ⪰ I
3: for τ = 1, . . . , t do
4: Update xτ+1 by (9), yτ+1 by (6), λτ+1 by (7)
5: end for
6: Output: x̂t = ∑tτ=1 xτ/t

Lemma 2 [2]. By setting β = ρ
∥A∥2∥x∗−x0∥2

(β depends on unknown x∗), after
t = O(1/ε2) iterations, with high probability, SADMM ensures that

F (x̂t) − F (x) ≤ ε.

Local Error Bound and Global Error Inequality

Definition 1. A function F (x) is said to satisfy a local error bound condition on ε-
sublevel set if there exist θ ∈ (0, 1] and c > 0 such that for any x ∈ Sε

dist(x,Ω∗) ≤ c(F (x) − F∗)θ. (10)

Lemma 3 [3].For any x ∈ Ω and ε > 0, we have

∥x − x†
ε∥2 ≤

dist(x†
ε ,Ω∗)
ε

(F (x) − F (x†
ε)) (11)

where x†
ε ∈ Sε is the closest point in the ε-sublevel set to x.

Locally Adaptive ADMM (LA-ADMM)

Algorithm 3 LA-ADMM (x0, β1,K, t)

1: Input: x0 ∈ Ω, K, t, initial β1
2: for k = 1, . . . ,K do
3: Let xk = ADMM(xk−1, βk, t)
4: Update βk+1 = 2βk
5: end for
6: Output: xK

Main Result 1

Theorem 1. Assume F (x) obeys the local error bound condition. Let LA-ADMM
run with t = O (⌈8ρ∥A∥2 max(1,c2)

ε1−θ ⌉) iterations for each stage and K = ⌈log2(ε0/ε)⌉ with

β1 = 2ρε1−θ

∥A∥2ε0
. Then F (xK) − F∗ ≤ 2ε. Hence, the iteration complexity of LA-ADMM is

Õ(1/ε1−θ).

• Remark 1. The number of iteration t depends on the unknown parameter c. This dependence can be relaxed by
using another level of restarting and increasing sequence of t. We refer readers to our paper for more details.

Locally Adaptive Stochastic ADMM (LA-SADMM)

Algorithm 4 LA-SADMM (x0, η1, β1,D1,K, t)

1: Input: x0 ∈ Rd, K, t, η1, initial β1 and D1.
2: for k = 1, . . . ,K do
3: Let xk = SADMM(xk−1, ηk, βk, t,Bk ∩Ω)
4: Update ηk+1 = ηk/2 and βk+1 = 2βk, Dk+1 =Dk/2.
5: end for
6: Output: xK

Main Result 2

Theorem 2. Assume F (x) obeys the local error bound condition. Given δ ∈ (0, 1)
and δ̃ = δ/K, let LA-SADMM run with t ≥ max{6912R2 log(1/δ̃)D2

1
ε2

0
, 12ρ∥A∥2D1

ε0
,
ρ2∥A∥2

2
R2 } it-

erations for each stage and K = ⌈log2(ε0
ε )⌉ with η1 = ε0

6R2, β1 = 6R2

∥A∥2
2ε0

, D1 ≥ cε0
ε1−θ and

Gτ = 2I − η1β1A⊺A ⪰ I . Then F (xK) − F∗ ≤ 2ε with probability 1 − δ. Hence, the
iteration complexity of LA-SADMM with probability 1 − δ is Õ(log(1/δ)/ε2(1−θ)).

• Remark 2. The radius D1 depends on the unknown parameter c. This dependence can be relaxed by using
another level of restarting and increasing sequence of t. We refer readers to our paper for more details.

Applications and Experiments

1. Generalized LASSO: minx∈RdF (x) = 1
n∑

n
i=1 `(x⊺ai, bi) + δ∥Ax∥1

• (ai, bi): a set of pairs of training data, i = 1, . . . , n; δ ≥ 0: regularization parameter;
A ∈ Rm×d: specified matrix; `(z, b): convex loss function in terms of z.

• Different types of LASSO:
• Standard LASSO: A = I ∈ Rd×d

• Fused LASSO: penalizes `1 norm of coefficients and successive differences
• Graph-guided fused LASSO (GGLASSO): A ∈ Rm×d encodes graph information
• Sparse graph-guided fused LASSO (S-GGLASSO): ∥Ax∥1 = δ2∥x∥1 + δ1∥Fx∥1

• Piecewise linear loss:
• hinge loss `(z, b) = max(0, 1 − bz), absolute loss `(z, b) = ∣z − b∣, ε-insensitive loss
`(z, b) = max(∣z − b∣ − ε, 0)

• θ = 1 ∶ both LA-ADMM and LA-SADMM achieve linear convergence O(log(1/ε))
• Piecewise quadratic loss:

• square loss `(z, b) = (z − b)2; squared hinge loss `(z, b) = max(0, 1 − bz)2

• θ = 1/2 ∶ LA-ADMM and LA-SADMM achieve iteration complexities of Õ(1/√ε)
and Õ(1/ε), respectively

2. Robust Regression with a Low-rank Regularizer: F (X) = λ∥X∥∗ + ∥AX −C∥1

3. Low-rank Representation: F (X) = λ∥X∥∗ + ∥AX −A∥2,1.
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(a) SVM + GGLASSO
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(c) SVM + S-GGLASSO
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