
Adaptive Negative Curvature Descent
with Applications in Non-convex Optimization

Mingrui Liu†, Zhe Li†, Xiaoyu Wang‡, Jinfeng Yi\, Tianbao Yang†
†Department of Computer Science, The University of Iowa, Iowa City, IA 52242, USA

‡ Intellifusion \ JD AI Research
mingrui-liu, tianbao-yang@uiowa.edu

Abstract

Negative curvature descent (NCD) method has been utilized to design deterministic
or stochastic algorithms for non-convex optimization aiming at finding second-order
stationary points or local minima. In existing studies, NCD needs to approximate
the smallest eigen-value of the Hessian matrix with a sufficient precision (e.g.,
ε2 � 1) in order to achieve a sufficiently accurate second-order stationary solution
(i.e., λmin(∇2f(x)) ≥ −ε2). One issue with this approach is that the target
precision ε2 is usually set to be very small in order to find a high quality solution,
which increases the complexity for computing a negative curvature. To address
this issue, we propose an adaptive NCD to allow an adaptive error dependent on
the current gradient’s magnitude in approximating the smallest eigen-value of the
Hessian, and to encourage competition between a noisy NCD step and gradient
descent step. We consider the applications of the proposed adaptive NCD for both
deterministic and stochastic non-convex optimization, and demonstrate that it can
help reduce the the overall complexity in computing the negative curvatures during
the course of optimization without sacrificing the iteration complexity.

1 Introduction

In this paper, we consider the following optimization problem:

min
x∈Rd

f(x), (1)

where f(x) is a non-convex smooth function with Lipschitz continuous Hessian, which could has
some special structure (e.g., expectation structure or a finite-sum structure). A standard measure
of an optimization algorithm is how fast the algorithm converges to an optimal solution. However,
finding the global optimal solution to a generally non-convex problem is intractable [13] and is even a
NP-hard problem [10]. Therefore, we aim to find an approximate second-order stationary point with:

‖∇f(x)‖ ≤ ε1, and λmin(∇2f(x)) ≥ −ε2, (2)

which nearly satisfy the second-order necessary optimality conditions, i.e., ∇f(x∗) =
0, λmin(∇2f(x∗)) ≥ 0, where ‖ · ‖ denotes the Euclidean norm and λmin(·) denotes the smallest
eigen-value function. In this work, we refer to a solution that satisfies (2) as an (ε1, ε2)-second-order
stationary solution. When the function is non-degenerate (i.e., strict saddle or the Hessian at all
saddle points have a strictly negative eigen-value), then the solution satisfying (2) is close to a local
minimum for sufficiently small 0 < ε1, ε2 � 1. Please note that in this paper we do not follow the
tradition of [14] that restricts ε2 =

√
ε1. One reason is for more generality that allows us to compare

several recent results and another reason is that having different accuracy levels for the first-order and
the second-order guarantee brings more flexibility in the choice of our algorithms.

Recently, there has emerged a surge of studies interested in finding an approximate second-order
stationary point that satisfy (2). An effective technique used in many algorithms is negative curvature

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

descent (NCD), which utilizes a negative curvature direction to decrease the objective value. NCD
has two additional benefits (i) escaping from non-degenerate saddle points; (ii) searching for a region
where the objective function is almost-convex that enables accelerated gradient methods. It has
been leveraged to design deterministic and stochastic non-convex optimization with state-of-the-art
time complexities for finding a second-order stationary point [4, 17, 16, 2]. A common feature
of these algorithms is that they need to compute a negative curvature direction that approximates
the eigenvector corresponding to the smallest eigen-value to an accurate level matching the target
precision ε2 on the second-order information, i.e., finding a unit vector v such that λmin(∇2f(x)) ≥
v>∇2f(x)v−ε2/2. The approximation accuracy has a direct impact on the complexity of computing
the negative curvature. For example, when the Lanczos method is utilized for computing the negative
curvature, its complexity (or the number of Hessian-vector products) is in the order of Õ(1/

√
ε2).

One potential issue is that the target precision ε2 is usually set to be very small in order to find a high
quality solution, which increases the complexity for computing a negative curvature, e.g., the number
of Hessian-vector products used in the Lanczos method.

In this paper, we propose an adaptive NCD step based on full or sub-sampled Hessian that uses a noisy
negative curvature to update the solution with an error of approximating the smallest eigen-value
adaptive to the magnitude of the (stochastic) gradient at the time of invocation. A novel result is that
for an iteration t that requires a negative curvature direction it is enough to compute a noisy negative
curvature that approximates the smallest eigen-vector with a noise level of max(ε2, ‖g(xt)‖α), where
g(xt) is the gradient or mini-batch stochastic gradient at the current solution xt and α ∈ (0, 1] is
a parameter that characterizes the relationship between ε2 and ε1, i.e., ε2 = εα1 . It implies that
the Lanczos method only needs Õ(1/

√
max(ε2, ‖g(xt)‖α) number of Hessian-vector products for

computing such a noisy negative curvature. Another feature of the proposed adaptive NCD step is
that it encourages the competition between a negative curvature descent and the gradient descent
to guarantee a maximal decrease of the objective value. Building on the proposed adaptive NCD
step, we design two simple algorithms to enjoy a second-order convergence for deterministic and
stochastic non-convex optimization. Furthermore, we demonstrate the applications of the proposed
adaptive NCD steps in existing deterministic and stochastic optimization algorithms to match the
state-of-the-art worst-case complexity for finding a second-order stationary point. However, the
adaptive nature of the developed algorithms make them perform better than their counterparts using
the standard NCD step.

2 Related Work

There have been several recent studies that explicitly explore the negative curvature direction for
updating the solution. Here, we emphasize the differences between the development in this paper and
previous works. Curtis and Robinson [7] proposed a similar algorithm to one of our deterministic
algorithms except for how to compute the negative curvature. The key difference between our work
and [7] lie at they ignored the computational costs for computing the (approximate) negative curvature.
In addition, they considered a stochastic version of their algorithms but provided no second-order
convergence guarantee. In contrast, we also develop a stochastic algorithm with provable second-order
convergence guarantee.

Royer and Wright [17] proposed an algorithm that utilizes the negative gradient direction, the negative
curvature direction, the Newton direction and the regularized Newton direction together with line
search in a unified framework, and also analyzed the time complexity of a variant with inexact
calculations of the negative curvature by the Lanczos algorithm and of the (regularized) Newton
directions by conjugate gradient method. The comparison between their algorithm and our algorithms
shows that (i) we only use the gradient and the negative curvature directions; (ii) the time complexity
for computing an approximate negative curvature in their work is also of the order of Õ(1/

√
ε2);

(iii) the time complexity of one of our deterministic algorithm is at least the same and usually better
than their time complexity. Additionally, their conjugate gradient method could fail due to the
inexact smallest eigen-value computed by the randomized Lanczos method, and their first-order and
second-order convergence guarantee could be on different points.

Carmon et al. [4] developed an algorithm that utilizes the negative curvature descent to reach a region
that is almost convex and then switches to an accelerated gradient method to decrease the magnitude
of the gradient. One of our algorithms is built on this development by replacing their negative

2

curvature descent with our adaptive negative curvature descent, which has the same guarantee on the
smallest eigen-value of the returned solution but uses a much less number of Hessian-vector products.
In addition, we also show that an inexact Hessian can be used in place of the full Hessian to enjoy the
same iteration complexity. Several studies revolve around solving cubic regularization step [1, 18],
which also requires a negative curvature direction.

Recently, several stochastic algorithms use the negative curvature information to derive the state-
of-the-art time complexities for finding a second-order stationary point for non-convex optimiza-
tion [16, 2, 19, 3], which combine existing stochastic first-order algorithms and a NCD method with
differences lying at how to compute the negative curvature. In this work, we also demonstrate the
applications of the proposed adaptive NCD for stochastic non-convex optimization, and develop
several stochastic algorithms that not only match the state-of-the-art worst-case time complexity but
also enjoy adaptively smaller time complexity for computing the negative curvature. We emphasize
that the proposed adaptive NCD could be used in future developments of non-convex optimization.

3 Preliminaries and Warm-up

In this work, we will consider two types of non-convex optimization problem: deterministic ob-
jective where the gradient ∇f(x) and Hessian ∇2f(x) can be computed, stochastic objective
f(x) = Eξ[f(x; ξ)] where only stochastic gradient∇f(x; ξ) and stochastic Hessian ∇2f(x; ξ) can
be computed. We note that a finite-sum objective can be considered as a stochastic objective. The
goal of the paper is to design algorithms that can find an (ε1, ε2)-second order stationary point x that
satisfies (2). For simplicity, we consider ε2 = εα1 for α ∈ (0, 1].

A function f(x) is smooth if its gradient is Lipschitz continuous, i.e., there exists L1 > 0 such that
‖∇f(x)−∇f(y)‖ ≤ L1‖x− y‖ hold for all x,y. The Hessian of a twice differentiable function
f(x) is Lipschitz continuous, if there exists L2 > 0 such that ‖∇2f(x)−∇2f(y)‖2 ≤ L2‖x−y‖ for
all x,y, where ‖X‖2 denotes the spectral norm of a matrix X . A function f(x) is called µ-strongly
convex (µ > 0) if f(y) ≥ f(x) +∇f(x)>(y − x) + µ

2 ‖y − x‖2,∀x,y. If f(x) satisfies the above
condition for µ < 0, it is referred to as γ-almost convex with γ = −µ.

Throughout the paper, we make the following assumptions.
Assumption 1. For the optimization problem (1), we assume:

(i) the objective function f(x) is twice differentiable;

(ii) it has L1-Lipschitz continuous gradient and L2-Lipschitz continuous Hessian;

(iii) given an initial solution x0, there exists ∆ <∞ such that f(x0)− f(x∗) ≤ ∆, where x∗
denotes the global minimum of (1);

(iv) if f(x) is a stochastic objective, we assume each random function f(x; ξ) is twice dif-
ferentiable and has L1-Lipschitz continuous gradient and L2-Lipschitz continuous Hes-
sian, and its stochastic gradient has exponential tail behavior, i.e., E[exp(‖∇f(x; ξ) −
∇f(x)‖2/G2)] ≤ exp(1) holds for any x ∈ Rd;

(v) a Hessian-vector product can be computed in O(d) time.

In this paper, we assume there exists an algorithm that can compute a unit-length negative curvature
direction v ∈ Rd of a function f(x) satisfying

λmin(∇2f(x)) ≥ v>∇2f(x)v − ε (3)

with high probability 1 − δ. We refer to such an algorithm as NCS(f,x, ε, δ) and denote its time
complexity by Tn(f, ε, δ, d), where NCS is short for negative curvature search.

There exist algorithms to implement negative curvature search (NCS) for two different cases: de-
terministic objective and stochastic objective with theoretical guarantee, which we provide in the
supplement. To facilitate the discussion in the following sections, we summarize the results here.
Lemma 1. For a deterministic objective, the Lanczos method find a unit vector v satisfying (3) with
a time complexity of Tn(f, ε, δ, d) = Õ

(
d√
ε

)
. For a stochastic objective f(x) = Eξ[f(x; ξ)], there

exists a randomized algorithm that produces a unit vector v satisfying (3) with a time complexity

3

Algorithm 1 AdaNCDdet(x, α, δ,∇f(x))

1: Apply NCS(f,x, max(ε2,‖∇f(x)‖α)
2 , δ) to find a unit vector v satisfying (3)

2: if 2(−v>∇2f(x)v)3

3L2
2

> ‖∇f(x)‖2
2L1

then

3: x+ = x− 2|v>∇2f(x)v|
L2

sign(v>∇f(x))v
4: else
5: x+ = x− 1

L1
∇f(x)

6: end if
7: Return x+,v

Algorithm 2 AdaNCDmb(x, α, δ,S,g(x)):

1: Apply NCS(fS ,x,
max(ε2,‖g(x)‖α)

2 , δ) to find a unit vector v satisfying (3) for fS
2: if 2(−v>HS(x)v)3

3L2
2

− ε2|v>HS(x)v|2
6L2

2
> ‖g(x)‖2

4L1
− ε′2

L1
then

3: x+ = x− 2|v>HS(x)v|
L2

zv �z ∈ {1,−1} is a Rademacher random variable
4: else
5: x+ = x− 1

L1
g(x)

6: end if
7: Return x+,v

of with Tn(f, ε, δ, d) = Õ
(
d
ε2

)
. If f(x) has a finite-sum structure with m components, then a

randomized algorithm exists that produces a unit vector v satisfying (3) with a time complexity of
Tn(f, ε, δ, d) = Õ(d(m+m3/4

√
1/ε)), where Õ suppresses a logarithmic term in δ, d, 1/ε.

4 Adaptive Negative Curvature Descent Step
In this section, we present several variants of adaptive negative curvature descent (AdaNCD) step
for different objectives and with different available information. We also present their guarantee on
decreasing the objective function.

4.1 Deterministic Objective
For a deterministic objective, when a negative curvature of the Hessian matrix∇2f(x) at a point x is
required, the gradient ∇f(x) is readily available. We utilize this information to design an AdaNCD
shown in Algorithm 1. First, we compute a noisy negative curvature v that approximates the smallest
eigen-value of the Hessian at the current point x up to a noise level ε = max(ε2, ‖∇f(x)‖α). Then
we take either the noisy negative curvature direction or the negative gradient direction depending on
which decreases the objective value more. This is done by comparing the estimations of the objective
decrease for following these two directions as shown in Step 3 in Algorithm 1. Its guarantee on
objective decrease is stated in the following lemma, which will be useful for proving convergence to
a second-order stationary point.

Lemma 2. When v>∇2f(x)v ≤ 0, the Algorithm 1 (AdaNCDdet) provides a guarantee that

f(x)− f(x+) ≥ max

(
2|v>∇2f(x)v|3

3L2
2

,
‖∇f(x)‖2

2L1

)

4.2 Stochastic Objective
For a stochastic objective f(x) = Eξ[f(x; ξ)], we assume a noisy gradient g(x) that satisfies (4)
(with high probability) is available when computing the negative curvature at x:

‖g(x)−∇f(x)‖ ≤ ε′ (4)

This can be met by using a mini-batch stochastic gradient g(x) = 1
|S1|

∑
ξ∈S1 f(x; ξ) with a

sufficiently large batch size (see Lemma 9 in the supplement).

We can use a NCS algorithm to compute a negative curvature based on a mini-batched Hessian. To
this end, let HS(x) = 1

|S|
∑
ξ∈S ∇2f(x; ξ), where S denote a set of random samples, satisfy the

4

following inequality (with high probability):

‖HS(x)−∇2f(x)‖2 ≤ ε2/12. (5)

The inequality (5) holds with high probability when S is sufficiently large due to the exponential tail
behavior of ‖HS(x)−∇2f(x)‖2 stated in the Lemma 8 in the supplement.

Denote by fS = 1
|S|
∑
ξ∈S f(·; ξ). A variant of AdaNCD using such a mini-batched Hessian is

presented in Algorithm 2, where z is a Rademacher random variable, i.e. z = 1,−1 with equal
probability. Lemma 3 provides objective decrease guarantee of Algorithm 2.

Lemma 3. When v>HS(x)v ≤ 0 and (5) holds (with high probability), the Algorithm 2 (AdaNCDmb)
provides a guarantee (with high probability) that

f(x)− E[f(x+)] ≥ max

{
2(−v>HS(x)v)3

3L2
2

− ε2|v>HS(x)v|2

6L2
2

,
‖g(x)‖2

4L1
− ε′2

L1

}
If v>HS(x)v ≤ −ε2/2, we have

f(x)− f(x+) ≥ max

(
ε32

24L2
2

,
‖g(x)‖2

4L1
− ε′2

L1

)
Remark: When the objective has a finite-sum structure, Algorithm 2 is also applicable, where
the noise gradient g(x) can be replaced with the full gradient ∇f(x). This is the variant using
sub-sampled Hessian.

We can also use a different variant of Algorithm 2: AdaNCDonline, which uses an online algorithm to
compute the negative curvature and is described in Algorithm 7 (in the supplement) with Lemma 7
(in the supplement) as its theoretical guarantee.

5 Simple Adaptive Algorithms with Second-order Convergence
In this section, we present simple deterministic and stochastic algorithms by employing AdaNCD
presented in the last section. These simple algorithms deserve attention due to several reasons (i) they
are simpler than many previous algorithms but can enjoy a similar time complexity when ε2 = ε1;
(ii) they guarantee that the objective value can decrease at every iteration, which does not hold for
some complicated algorithms with state-of-the-art complexity results (e.g., [4, 2]).

5.1 Deterministic Objective
We present a deterministic algorithm for a deterministic objective in Algorithm 3, which is referred
to as AdaNCG (where NCG represents Negative Curvature and Gradient, Ada represents the adaptive
nature of the NCD component).

Theorem 1. For any α ∈ (0, 1], the AdaNCG algorithm terminates at iteration j∗ for some

j∗ ≤ 1 + max

(
12L2

2

ε3α1
,

2L1

ε21

)
(f(x1)− f(xj∗)) ≤ 1 + max

(
12L2

2

ε3α1
,

2L1

ε21

)
∆, (6)

with ‖∇f(xj∗)‖ ≤ ε1, and with probability at least 1− δ, λmin(∇2f(xj∗)) ≥ −εα1 . Furthermore,
the j-th iteration requires time a complexity of Tn(f,max(εα1 , ‖∇f(xj)‖α), δ′, d).
Remark: First, when ε2 = ε1 = ε, the iteration complexity of AdaNCG for achieving a point
with max{‖∇f(x)‖,−λmin(∇2f(x))} ≤ ε is O(1/ε3), which match the results in previous works
(e.g. [17, 5, 6, 18]). However, the number of Hessian-vector products in AdaNCG could be much less
than that in these existing works. For example, the number of Hessian-vector products in [17, 18]
is Õ(1/

√
ε2) at each iteration requiring the second-order information. In contrast, when employ-

ing the Lanczos method the number of Hessian-vector products at each iteration of AdaNCG is
Õ(d/

√
max(ε2, ‖∇f(xj)‖α)), which could be much smaller than Õ(1/

√
ε2) depending on the

magnitude of the gradient. Second, the worse-case time complexity of AdaNCG is given by
Õ
(
dmax

{
ε−21 ε

−1/2
2 , ε

−7/2
2

})
using the worse-case time complexity of each iteration, which is the

same as the result of Theorem 2 in [18].

One might notice that if we plug ε1 = ε, ε2 =
√
ε into the worst-case time complexity of AdaNCG, we

end up with Õ(d/ε9/4), which is worse than the best time complexity Õ(d/ε7/4) found in literature

5

Algorithm 3 AdaNCG: (x0, ε1, α, δ)

1: x1 = x0, ε2 = εα1

2: δ′ = δ/(1 + max
(

12L2
2

ε32
, 2L1

ε21

)
∆),

3: for j = 1, 2, . . . , do
4: (xj+1,vj) = AdaNCDdet(xj , α, δ

′,∇f(x))
5: if v>j ∇2f(xj)vj > − ε22 and ‖∇f(xj)‖ ≤ ε1 then
6: Return xj
7: end if
8: end for

Algorithm 4 S-AdaNCG: (x0, ε1, α, δ)

1: x1 = x0, ε2 = εα1 , δ′ = δ/Õ(ε−21 , ε−32)
2: for j = 1, 2, . . . , do
3: Generate two random sets S1,S2
4: let g(xj) = 1

|S1|
∑
ξ∈S1 ∇f(x; ξ) satisfy (4)

5: (xj+1,vj) = AdaNCDmb(xj , α, δ
′,S2,g(xj))

6: if v>j HS2(xj)vj > −ε2/2 and ‖g(xj)‖ ≤ ε1 then
7: Return xj
8: end if
9: end for

(e.g., [1, 4]). In next section, we will use AdaNCG as a sub-routine to develop an algorithm that can
match the state-of-the-art time complexity but also enjoy the adaptiveness of AdaNCG.

Before ending this subsection, we would like to point out that an inexact Hessian satisfying (5) can
be used for computing the negative curvature. For example, if the objective has a finite-sum form,
AdaNCDdet can be replaced by AdaNCDmb using full gradient. Lemma 3 provides a similar guarantee
to Lemma 2 and can be used to derive a similar convergence to Theorem 1.

5.2 Stochastic Objective
We present a stochastic algorithm based on the AdaNCDmb in Algorithm 4, which is referred to as
S-AdaNCG (where S represents stochastic). A similar algorithm based on the AdaNCDonline with
similar worst-case complexity can be developed, which is omitted.

Theorem 2. Set |S1| = 32G2

ε21
(1 + 3 log(2

δ′)) and |S2| = 9216L2
1

ε22
log(4d

δ′). With probability 1− δ, the

S-AdaNCG algorithm terminates at some iteration j∗ = Õ(max
(

1
ε32
, 1
ε21

)
) and upon termination it

holds that ‖∇f(xj∗)‖ ≤ 2ε1 and λmin
(
∇2f(xj∗)

)
≥ −2ε2 with probability 1−3δ. Furthermore, the

worst-case time complexity of S-AdaNCG is given by Õ
(

max
(

1
ε32
, 1
ε21

)(
d
ε21

+ Tn(fS2 , ε2, δ
′, d)

))
.

Remark: We can analyze the worst-case time complexity of S-AdaNCG by using randomized
algorithms as in Lemma 1 to compute the negative curvature with Tn(f, ε, δ, d) = Õ

(
d
ε2

)
. Let us

consider ε2 = ε
1/2
1 , it is not difficult to show that the worst-case time complexity of S-AdaNCG is

Õ
(
d/ε41

)
, which matches the time complexity of stochastic gradient descent for finding a first-order

stationary point. It is almost linear in the problem’s dimensionality better than that of noisy SGD
methods [9, 20]. It is also notable that the worst-case time complexity of S-AdaNCG is worse than that
of a recent algorithm called Natasha2 proposed in [2], which has a state-of-the-art time complexity
of Õ

(
d/ε3.51

)
for finding an (ε1,

√
ε1) second-order stationary point. However, S-AdaNCG is much

simpler than Natasha2, which involves many parameters and switches between several procedures. In
next section, we will present an improved algorithm of S-AdaNCG, whose worst-case time complexity
matches Õ

(
d/ε3.51

)
for finding an (ε1,

√
ε1) second-order stationary point.

6 Adaptive Algorithms with State-of-the-Art Complexities
In this section, we demonstrate the applications of the presented AdaNCD for deterministic and
stochastic optimization with a state-of-the-art time complexity, aiming for better practical performance
than their counterparts in literature. We will show that how the proposed AdaNCD can reduce the
time complexity of these existing algorithms.

6

Algorithm 5 AdaNCG+: (x0, ε1, α, δ)

1: ε2 = εα1 , K := d1 + ∆
(

max(12L2
2,2L1)

ε32
+ 2
√
10L2

ε1ε2

)
e

2: δ′ := δ/K
3: for k = 1, 2, . . . , do
4: x̂k = AdaNCG(xk, ε

3α/2
1 , 23 , δ

′)
5: if ‖∇f(x̂k)‖ ≤ ε1 then
6: Return x̂k
7: else
8: fk(x) = f(x) + L1 ([‖x− x̂k‖ − ε2/L2]+)

2

9: xk+1 = Almost-Cvx-AGD(fj , x̂k,
ε1
2 , 3ε2, 5L1)

10: end if
11: end for

Algorithm 6 AdaNCD-SCSG: (x0, ε1, α, b, δ)

1: Input: x0, ε1, α, δ
2: for j = 1, 2, . . . , do
3: Generate three random sets S,S1,S2
4: yj = SCSG-Epoch(xj ,S, b)
5: let g(yj) = ∇fS1(x; ξ) satisfy (4)
6: (xj+1,vj) = AdaNCDmb(yj , α, δ,S2,g(yj))
7: if v>j HS2(yj)vj > −ε2/2 and ‖g(yj)‖ ≤ ε1 then
8: Return yj
9: end if

10: end for

6.1 Deterministic Objective

For deterministic objective, we consider the accelerated method proposed in [4], which relies on
NCD to find a point around which the objective function is almost convex and then switches to an
accelerated gradient method. We present an adaptive variant of [4]’s method in Algorithm 5, where
we use our AdaNCG in place of NCD. The procedure Almost-Convex-AGD is the same as in [4].
For completeness, we present it in the supplement. The convergence guarantee is presented below.

Theorem 3. For any α ∈ (0, 1], let ε2 = εα1 . With probability at least 1 − δ, the Al-
gorithm AdaNCG+ returns a vector x̂k such that ‖∇f(x̂k)‖ ≤ ε1 and λmin(∇2f(x̂k)) ≥

−ε2 with at most O
(

1
ε32

+ 1
ε1ε2

)
AdaNCD steps in AdaNCG and Õ

[(
1

ε
7/2
2

+ 1

ε1ε
3/2
2

)
+

ε
1/2
2

ε21

]
gradient steps in Almost-Convex-AGD, and each step j within AdaNCG+ requires time of
Tn(f,max(ε2, ‖∇f(xj)‖2/3)1/2, δ′, d), and the worse-case time complexity of AdaNCG+ is

Õ

((
d

ε1ε
3/2
2

+ d

ε
7/2
2

)
+

dε
1/2
2

ε21

)
when using the Lanczos method for NCS.

Remark: First, when ε2 ≤
√
ε1, the worst-case time complexity of AdaNCG+ is Õ

(
d

ε1ε
3/2
2

+ d

ε
7/2
2

)
.

Specially, for ε2 =
√
ε1 it reduces to Õ(d/ε7/4), which matches the best time complexity in

previous studies. Second, we note that the subroutine AdaNCG(xj , ε
3α/2
1 , 2/3, δ′) provides the

same guarantee as the NCD in [4] (see Corollary 1 in the supplement), i.e., returning a solution x̂j
satisfying λmin(∇2f(x̂j)) ≥ −ε2 with high probability. The number of iterations within AdaNCG
is similar to that in NCD employed by [4], and the number of iterations within Almost-Convex-
AGD is similar to that in [4]. The improvement of AdaNCG+ over [4]’s algorithm is brought
by reducing the number of Hessian-vector products for performing each iteration of AdaNCG.
In particular, the number of Hessian-vector products of each NCD step in [4] is Õ(1/

√
ε2), which

becomes Õ(1/
√

max(ε2, ‖∇f(xj)‖2/3)) for each AdaNCD step in AdaNCG+. Finally, we note that
AdaNCG+ has the same worse-case time complexity as AdaNCG for ε2 ∈ [ε1, ε

2/3
1], but improves

over AdaNCG+ for ε2 ∈ [ε
2/3
1 , ε

1/2
1].

7

6.2 Stochastic Objective
Next, we present a stochastic algorithm for tackling a stochastic objective f(x) = E[f(x; ξ)] in order
to achieve a state-of-the-art worse-case complexity for finding a second-order stationary point. We
consider combining the proposed AdaNCDmb with an existing stochastic variance reduced gradient
method for a stochastic objective, namely SCSG [12].

The detailed steps are shown in Algorithm 6, which is referred to as AdaNCD-SCSG and can be
considered as an improvement of Algorithm 4. The sub-routine SCSG-Epoch is one epoch of SCSG,
which is included in the supplement. It is worth mentioning that Algorithm 6 is based on the design
of [19] that also combined a NCD step with SCSG to prove the second-order convergence. The
difference from [19] is that they studied how to use a first-order method without resorting to Hessian-
vector products to extract the negative curvature direction, while we focus on reducing the time
complexity of NCS using the proposed adaptive NCD. Our result below shows AdaNCD-SCSG has a
worst-case time complexity that matches the state-of-the-art time complexity for finding an (ε1,

√
ε1)

second-order stationary point.

Theorem 4. For any α ∈ (0, 1], let ε2 = εα1 . Suppose |S| = Õ(max(1/ε21, 1/(ε
9/2
2 b1/2))), |S1| =

Õ(1/ε21) and |S2| = Õ(1/ε22). With high probability, the Algorithm AdaNCD-SCSG returns a vector

yj such that ‖∇f(yj)‖ ≤ 2ε1 and λmin(∇2f(xj)) ≥ −2ε2 with at most Õ
(
b1/3

ε
4/3
1

+ 1
ε32

)
calls of

SCSG-Epoch and AdaNCDmb.
Remark: The worst-case time complexity of AdaNCD-SCSG can be computed as

Õ

((
b1/3

ε
4/3
1

+
1

ε32

)
(|S|d+ |S1|d+ Tn(fS2 , ε2, δ

′, d))

)
.

If we consider using randomized algorithms as in Lemma 6 in supplement to implement NCS in

AdaNCDmb, the above time complexity reduces to Õ
(
d

(
b1/3

ε
4/3
1

+ 1
ε32

)(
1
ε21

+ 1

ε
9/2
2 b1/2

+ 1
ε22

))
. Let

us consider ε2 = ε
1/2
1 . By setting b = 1/ε

1/2
1 , the worst-case time complexity of AdaNCD-SCSG is

Õ(d/ε3.5).

7 Empirical Studies
In this section, we report some experimental results to justify effectiveness of AdaNCD for both
deterministic and stochastic non-convex optimization. We consider three problems, namely, the
cubic regularization, regularized non-linear least-square, and one hidden-layer neural network (NN)
problem.

The cubic regularization problem is: minw
1
2w
>Aw +b>w + ρ

3‖w‖
3
2, where A ∈ R1000×1000. For

deterministic optimization, we generate a diagonal A such that 100 randomly selected diagonal entry
is −1 and the rest diagonal entries follow uniform distribution between [1, 2], and set b as a zero
vector. For stochastic optimization, we letA = A′+E[diag(ξ)] and b = E[ξ′], whereA′ is generated
similarly, ξ are uniform random variables from [−0.1, 0.1] and ξ′ are uniform random variables from
[−1, 1]. The parameter ρ is set to 0.5 for both deterministic and stochastic experiments. It is clear
that zero is a saddle point of the problem. In order to test the capability of escaping from saddle point,
we let each algorithm start from a zero vector.

The regularized non-linear least-square problem is: minw
1
n

∑n
i=1

(
yi − σ(w>xi)

)2
+
∑d
i=1

λw2
i

1+αw2
i

,

where xi ∈ Rd, yi ∈ {0, 1}, σ(s) = 1/(1 + exp(−s)) is a sigmoid function, and the second term is
a non-convex regularizer [15], which is to increase the negative curvature of the problem. We use
w1a data (n = 2477, d = 300) from the libsvm website [8], and set λ = 1.

Learning a NN with one hidden layer is imposed as: minw
1
n

∑n
i=1 `(W2σ(W1xi + b1) + b2, yi),

where xi ∈ Rd, yi ∈ {1,−1} are input data, W1,W2, b1, b2 are parameters of the NN with appro-
priate dimensions, and `(z, y) is cross-entropy loss. We use 12, 665 examples from the MNIST
dataset [11] that belong to two categories 0 and 1 as input data, where the input feature dimensionality
is 784. The number of neurons in hidden layer is set to 10 so that the total number of parameters
including bias terms is 7872.

8

0 200 400 600 800 1000 1200 1400

Number of oracle calls

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

o
b
je

c
ti
v
e

NCD-AG

AdaNCG
+

NCG

AdaNCG

0 0.5 1 1.5 2 2.5 3

Number of oracle calls ×10
4

0.23

0.235

0.24

0.245

0.25

O
b
je

c
ti
v
e

NCD-AG

AdaNCG
+

NCG

AdaNCG

0 2 4 6 8 10

Number of oracle calls ×10
4

1

1.5

2

2.5

3

3.5

4

4.5

5

O
b
je

c
ti
v
e

NCD-AG

AdaNCG
+

NCG

AdaNCG

Number of oracle calls ×10
4

0 2 4 6 8

O
b
je

c
ti
v
e

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

AdaNCD-SCSG
NCD-SCSG
S-AdaNCG

Number of oracle calls ×10
4

0 0.5 1 1.5 2 2.5 3 3.5

O
b
je

c
ti
v
e

0.232

0.234

0.236

0.238

0.24

0.242

0.244

0.246

0.248

0.25

AdaNCD-SCSG
NCD-SCSG
S-AdaNCG

Number of oracle calls ×10
5

0 1 2 3 4 5

O
b
je

c
ti
v
e

1

1.5

2

2.5

3

3.5

4

4.5

5

AdaNCD-SCSG
NCD-SCSG
S-AdaNCG

Figure 1: Comparison of different deterministic algorithms (upper) and stochastic algorithms (lower)
for solving cubic regularization, regularized nonlinear least square, and neural network (from left to
right).
For deterministic experiments, we compare AdaNCG, AdaNCG+ with their non-adaptive counter-
parts. In particular, the non-adaptive counterpart of AdaNCG named NCG uses NCS(f,x, ε2/2, δ).
The non-adaptive counterpart of AdaNCG+ is the algorithm proposed in [4], which is referred to
as NCD-AG. For stochastic experiments, we compare S-AdaNCG, AdaNCD-SCSG, and the non-
adaptive version of AdaNCD-SCSG named NCD-SCSG. For all experiments, we choose α = 1

2 , i.e.,
ε2 =

√
ε1. The parameters L1, L2 are tuned for the non-adaptive algorithm NCG, and the same values

are used in other algorithms. The searching range for L1 and L2 are from 10−5:1:5. The mini-batch
size used in S-AdaNCG and AdaNCD-SCSG is set to 50 for cubic regularization and 128 for other two
tasks. We use the Lanczos method for NCS. For non-adaptive algorithms, the number of iterations in
each call of the Lanczos method is set to min(C log(d)/

√
ε2, d); and for adaptive algorithms, the num-

ber of iterations in each call of the Lanczos method is set to min(C log(d)/
√

max(ε2, ‖g(x)‖1/2), d),
where g(x) is either a full gradient or a mini-batch stochastic gradient. The value of C is set to

√
L1.

We set ε1 = 10−2 for cubic regularization, and ε1 = 10−4 for other two tasks. We report the objective
value v.s. the number of oracle calls (including gradient evaluations and Hessian-vector productions)
in Figure 1. From deterministic optimization results, we can see that the AdaNCD can greatly
improve the convergence of AdaNCG and AdaNCG+ compared to their non-adaptive counterparts. In
addition, AdaNCG performs better than AdaNCG+ on the tested tasks. The reason is that AdaNCG
can guarantee the decrease of the objective values at every iteration, while AdaNCG+ that uses the
AG method to optimize an almost convex functions does not have such guarantee. From stochastic
optimization results, AdaNCD also makes AdaNCD-SCSG converge faster than its non-adaptive
counterpart NCD-SCSG. In addition, AdaNCD-SCSG is faster than S-AdaNCG. Finally, we note
that the final solution found by the proposed algorithms satisfy the prescribed optimality condition.
For example, on the solution found by AdaNCG on the cubic regularization problem the gradient
norm is 0.0085 and the minimum eigen-value of the Hessian is −0.0043.

8 Conclusion
In this paper, we have developed several variants of adaptive negative curvature descent step that
employ a noisy negative curvature direction for non-convex optimization. The novelty of the
proposed algorithms lie at that the noise level in approximating the negative curvature is adaptive
to the magnitude of the current gradient instead of a prescribed small noise level, which could
dramatically reduce the number of Hessian-vector products. Building on the adaptive negative
curvature descent step, we have developed several deterministic and stochastic algorithms and
established their complexities. The effectiveness of adaptive negative curvature descent is also
demonstrated by empirical studies.

Acknowledgments

We thank the anonymous reviewers for their helpful comments. M. Liu, T. Yang are partially
supported by National Science Foundation (IIS-1545995).

9

References
[1] Naman Agarwal, Zeyuan Allen Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding approximate

local minima faster than gradient descent. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 1195–1199, 2017.

[2] Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than sgd. CoRR, /abs/1708.08694, 2017.

[3] Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order oracles. CoRR,
abs/1711.06673, 2017.

[4] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for non-convex
optimization. CoRR, abs/1611.00756, 2016.

[5] Coralia Cartis, Nicholas I. M. Gould, and Philippe L. Toint. Adaptive cubic regularisation methods
for unconstrained optimization. part i: motivation, convergence and numerical results. Mathematical
Programming, 127(2):245–295, Apr 2011.

[6] Coralia Cartis, Nicholas I. M. Gould, and Philippe L. Toint. Adaptive cubic regularisation methods for un-
constrained optimization. part ii: worst-case function- and derivative-evaluation complexity. Mathematical
Programming, 130(2):295–319, Dec 2011.

[7] Frank E. Curtis and Daniel P. Robinson. Exploiting negative curvature in deterministic and stochastic
optimization. CoRR, abs/1703.00412, 2017.

[8] Rong-En Fan and Chih-Jen Lin. Libsvm data: Classification, regression and multi-label. URL: http://www.
csie. ntu. edu. tw/cjlin/libsvmtools/datasets, 2011.

[9] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points — online stochastic
gradient for tensor decomposition. In Peter Grünwald, Elad Hazan, and Satyen Kale, editors, Proceedings
of The 28th Conference on Learning Theory (COLT), volume 40, pages 797–842. PMLR, 03–06 Jul 2015.

[10] Christopher J. Hillar and Lek-Heng Lim. Most tensor problems are np-hard. J. ACM, 60(6):45:1–45:39,
November 2013.

[11] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[12] Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum optimization via scsg
methods. In Advances in Neural Information Processing Systems, pages 2345–2355, 2017.

[13] A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency in Optimization. A
Wiley-Interscience publication. Wiley, 1983.

[14] Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global performance.
Mathematical Programming, 108(1):177–205, 2006.

[15] Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Fast incremental method for smooth
nonconvex optimization. In Decision and Control (CDC), 2016 IEEE 55th Conference on, pages 1971–
1977. IEEE, 2016.

[16] Sashank J. Reddi, Manzil Zaheer, Suvrit Sra, Barnabás Póczos, Francis R. Bach, Ruslan Salakhutdinov,
and Alexander J. Smola. A generic approach for escaping saddle points. CoRR, abs/1709.01434, 2017.

[17] Clément W. Royer and Stephen J. Wright. Complexity analysis of second-order line-search algorithms for
smooth nonconvex optimization. CoRR, abs/1706.03131, 2017.

[18] Peng Xu, Farbod Roosta-Khorasani, and Michael W. Mahoney. Newton-type methods for non-convex
optimization under inexact hessian information. CoRR, abs/1708.07164, 2017.

[19] Yi Xu, Rong Jin, and Tianbao Yang. First-order stochastic algorithms for escaping from saddle points in
almost linear time. CoRR, abs/1711.01944, 2017.

[20] Yuchen Zhang, Percy Liang, and Moses Charikar. A hitting time analysis of stochastic gradient langevin
dynamics. In Proceedings of the 30th Conference on Learning Theory (COLT), pages 1980–2022, 2017.

10

